Skip to main content
Log in

Response of largemouth bass (Micropterus salmoides) from different thermal environments to increased water temperature

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Due to concerns of global climate change, additional research is needed to quantify the thermal tolerance of species, and how organisms are able to adapt to changes in thermal regime. We quantified the thermal tolerance and thermal stress response of a temperate sportfish from two different thermal environments. One group of largemouth bass (Micropterus salmoides) inhabited thermally enhanced reservoirs (used for power plant cooling), with water temperatures typically 2–5 °C warmer than nearby reservoirs. We tested fish for chronic thermal maxima and reaction to an 8 °C heat shock using three common physiological indices of stress. We observed no evidence of differences between groups in thermal maxima. We observed no differences in thermal maxima between fish from artificially warmed and natural systems. Our results disagree with research, suggesting differences due to adaptation to different thermal environments. We speculate that behavioral modifications, lack of adequate time for genetic divergence, or the robust genetic plasticity of largemouth bass explain the lack of difference between treatment groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do species’ traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689

    Article  PubMed  Google Scholar 

  • Ayrinhac A, Debat V, Gibert P, Kister AG, Legout H, Moreteau B, Vergilino R, David JR (2004) Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Funct Ecol 18(5):700–706

    Article  Google Scholar 

  • Becker CD, Genoway RG (1979) Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environ Biol Fishes 4:245–256

    Article  Google Scholar 

  • Beitinger TL, Bennett WA, McCauley RW (2000) Temperature tolerances of North American fishes exposed to dynamic changes in temperature. Environ Biol Fish 58:237–275

    Article  Google Scholar 

  • Block CJ, Spotila JR, Standora EA, Gibbons JW (1984) Behavioral thermoregulation of largemouth bass, Micropterus salmoides, and bluegill, Lepomis macrochirus, in a nuclear reactor cooling reservoir. Environ Biol Fish 11(1):41–52

    Article  Google Scholar 

  • Britton JR, Cucherousset J, Davies GD, Godard MJ, Copp GH (2010) Non-native fishes and climate change: prediction species responses to warming temperatures in a temperature region. Freshw Biol 55:1130–1141

    Article  Google Scholar 

  • Carmichael GJ, Tomasso JR, Simco BA, Davis KB (1984) Confinement and water quality-induced stress in largemouth bass. Trans Am Fish Soc 113:767–777

    Article  Google Scholar 

  • Cataldi E, Di Marco P, Mandich A, Cataudella S (1998) Serum parameters of Adriatic sturgeon Acipenser naccarii (Pisces: Acipenserformes): effects of temperature and stress. Comp Biochem Physiol A 121:351–354

    Article  Google Scholar 

  • Chipps SR, Wahl DH (2008) Bioenergetics modeling in the 21st century: reviewing new insights and revisiting old constraints. Trans Am Fish Soc 137(1):298–313

    Article  Google Scholar 

  • Chipps SR, Clapp DF, Wahl DH (2000) Variation in routine metabolism of juvenile muskellunge: evidence for seasonal metabolic compensation in fishes. J Fish Biol 56:311–318

    Article  Google Scholar 

  • Cohet Y, David J (1978) Control of adult reproductive potential by preimaginal thermal conditions: a study in Drosophila melanogaster. Oecologia 36:295–306

    Article  Google Scholar 

  • Cook AM, Duston J, Bradford RG (2006) Thermal tolerance of a northern population of striped bass Morone saxatilis. J Fish Biol 69:1482–1490

    Article  Google Scholar 

  • Cooke SJ, Bunt CM, Schreer JF (2004) Understanding fish behavior, distribution, and survival in thermal effluents using fixed telemetry arrays: a case study of smallmouth bass in a discharge canal during winter. Environ Manag 33(1):140–150

    Article  Google Scholar 

  • Cowles RB, Bogert CM (1944) A preliminary study of the thermal requirements of desert reptiles. Bull Am Mus Nat Hist 83:265–296

    Google Scholar 

  • Cross EE, Rawding RS (2009) Acute thermal tolerance in the round goby, Apollonia melanostoma (Neogobius melanostomus). J Therm Biol 34:85–92

    Article  Google Scholar 

  • Currie RJ, Bennett WA, Beitinger TL (1998) Critical thermal minima of three freshwater game-fish species acclimated to constant temperatures. Environ Biol Fish 51:187–200

    Article  Google Scholar 

  • Diaz F, Re AD, Gonzalez RA, Sanchez LN, Leyva G, Valenzuela F (2007) Temperature preference and oxygen consumption of the largemouth bass Micropterus salmoides (Lacepede) acclimated to different temperatures. Aquac Res 38:1387–1394

    Article  Google Scholar 

  • Dunham J, Rieman B, Chandler G (2003) Influences of temperature and environmental variables on the distribution of bull trout within streams at the southern margin of its range. North Am J Fish Manag 23(3):894–904

    Article  Google Scholar 

  • Eaton JG, Scheller RM (1996) Effects of climate warming on fish thermal habitat in streams of the United States. Limnol Oceanogr 41(5):1109–1115

    Article  Google Scholar 

  • Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SG, Farrell AP (2011) Differences in thermal tolerance among sockeye salmon populations. Science 332(6025):109–112

    Article  CAS  PubMed  Google Scholar 

  • Fangue NA, Hofmeister M, Schulte PM (2006) Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J Exp Biol 209(15):2859–2872

    Article  CAS  PubMed  Google Scholar 

  • Fields R, Lowe SS, Kaminski C, Whitt GS, Philipp DP (1987) Critical and chronic thermal maxima of northern and Florida largemouth bass and their reciprocal F1 and F2 hybrids. Trans Am Fish Soc 116:856–863

    Article  Google Scholar 

  • Furimsky M, Cooke SJ, Suski CD, Wang Y, Tufts BL (2003) Respiratory and circulatory responses to hypoxia in largemouth bass and smallmouth bass: implications for “live-release” angling tournaments. Trans Am Fish Soc 132:1065–1075

    Article  Google Scholar 

  • Galbreath PF, Adams ND, Martin TH (2004) Influence of heating rate on measurement of time to thermal maximum in trout. Aquaculture 241:587–599

    Article  Google Scholar 

  • Galbreath PF, Adams ND, Sherrill LW, Martin TH (2006) Thermal tolerance of diploid versus triploid rainbow trout and brook trout assessed by time to chronic lethal maximum. Environ Biol Fish 75:183–193

    Article  Google Scholar 

  • Gaulke GL, Wahl DH, Suski CD (In Press) Acclimation to a low oxygen environment alters the hematology of largemouth bass (Micropterus salmoides). Fish Physiol Biochem. doi:10.1007/s10695-013-9830-6 to demonstrate plasticity in largemouth bass

  • Gibbons JW, Bennett DH, Esch GW, Hazen TC (1978) Effects of thermal effluent on body condition of largemouth bass. Nature 274(5670):470–471

    Article  Google Scholar 

  • Hansen MJ, Boisclair D, Brandt SB, Hewett SW, Kitchell JF, Lucas MC, Ney JJ (1993) Applications of bioenergetics models to fish ecology and management: where do we go from here? Trans Am Fish Soc 122:1019–1030

    Article  Google Scholar 

  • Hoffman AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  Google Scholar 

  • Hostetler SW (1991) Analysis and modeling of long-term stream temperatures on the Steamboat Creek basin, Oregon—implications for land-use and fish habitat. Water Resour Bull 27(4):637–647

    Article  Google Scholar 

  • Houston AH (1990) Blood and circulation. In: Schreck CB, Boyle PB (eds) Methods for fish biology. American Fisheries Society, Bethesda, pp 273–334

    Google Scholar 

  • Huey RB, Berrigan D, Gilchrist GW, Herron JC (1999) Testing the adaptive significance of acclimation: a strong inference approach. Am Zool 39:323–336

    Google Scholar 

  • Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioral inertia in evolution: a null model approach. Am Nat 161(3):357–366

    Article  PubMed  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Iwama GK, Thomas PT, Forsyth RB, Vijayan MM (1998) Heat shock protein expression in fish. Rev Fish Biol Fish 8:35–56

    Article  Google Scholar 

  • Kimball ME, Miller JM, Whitfield PE, Hare JA (2004) Thermal tolerance and potential distribution of invasive lionfish (Pterois volitans/miles complex) on the east coast of the United States. Mar Ecol Prog Ser 283:269–278

    Article  Google Scholar 

  • La Sorte FA, Jetz W (2012) Tracking of climatic niche boundaries under recent climate change. J Anim Ecol 81:914–925

    Article  PubMed  Google Scholar 

  • LeRoi AM, Bennett AF, Lenski RE (1994) Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc Natl Acad Sci 91:1917–1921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic Press, New York

    Google Scholar 

  • Luksiene D, Sandstrom O, Lounasheimo L, Andersson J (2000) The effects of thermal effluent exposure on the gametogenesis of female fish. J Fish Biol 56(1):37–50

    Article  Google Scholar 

  • Matthews WJ, Zimmerman EG (1990) Potential effects of global warming on native fishes of the southern Great Plains and the Southwest. Fisheries 15(6):26–32

    Article  Google Scholar 

  • Meffe GK (1992) Plasticity of life-history characters in eastern mosquitofish (Gambusia holbrooki, Poeciliidae) in response to thermal stress. Copeia 1:94–102

    Article  Google Scholar 

  • Meffe GK, Weeks SC, Mulvey M, Kandl KL (1995) Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrooki Poeciliidae) from ambient and thermal ponds. Can J Fish Aquat Sci 52(12):2704–2711

    Article  Google Scholar 

  • Mesa MG, Weiland LK, Wagner P (2002) Effects of acute thermal stress on the survival, predator avoidance, and physiology of juvenile fall chinook salmon. Northwest Sci 76(2):118–128

    Google Scholar 

  • Meyer JL, Sale MJ, Mulholland PJ, Poff NL (1999) Impacts of climate change on aquatic ecosystem functioning and health. J Am Water Resour Assoc 35:1373–1386

    Article  Google Scholar 

  • Mohseni O, Stefan HG, Eaton JG (2003) Global warming and potential changes in fish habitat in U.S. streams. Clim Change 59(3):389–409

    Article  CAS  Google Scholar 

  • Morgan IJ, McDonald DG, Wood CM (2001) The cost of living for freshwater fish in a warmer, more polluted world. Glob Change Biol 7(4):345–355

    Article  Google Scholar 

  • Mulhollem JJ, Colombo RE, Wahl DH (2014) Effects of heated effluent on Midwestern U.S. lakes: implications for future climate change. Unpublished Manuscript

  • Newton JR, Smith-Keune C, Jerry DR (2010) Thermal tolerance varies in tropical and sub-tropical populations of barramundi (Lates calcarifer) consistent with local adaptation. Aquaculture 308(SI 1):S128–S132

    Article  Google Scholar 

  • Page LM, Burr BM (eds) (2011) Peterson field guide to freshwater fishes of North America north of Mexico. Houghton Mifflin Harcourt, New York

    Google Scholar 

  • Portner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315(5808):95–97

    Article  PubMed  Google Scholar 

  • Rapp T, Hallermann J, Cooke SJ, Hetz SK, Wuertz S, Arlinghaus R (2012) Physiological and behavioural consequences of capture and retention in carp sacks on common carp (Cyprinus carpio L.), with implications for catch-and-release recreational fishing. Fish Res 125–126:57–68

    Article  Google Scholar 

  • Rodnick KJ, Gamperl AK, Lizars KR, Bennett MT, Rausch RN, Keeley ER (2004) Thermal tolerance and metabolic physiology among redband trout populations in south-eastern Oregon. J Fish Biol 64(2):310–335

    Article  CAS  Google Scholar 

  • Scalici M, Schiavone F, Marinelli A, Gibertini G (2009) Growth, longevity, and mortality of the largemouth bass Micropterus salmoides (Lacepede, 1802) in a Mediterranean Lake (Rome, Italy). Revue D’Ecologie-La Terre et la Vie 64(1):51–60

    Google Scholar 

  • Schramm HL, Armstrong ML, Funicelli NA, Green DM, Lee DP, Manns RE Jr, Taubert BD, Waters SJ (1991) The status of competitive sport fishing in North America. Fisheries 16:4–12

    Article  Google Scholar 

  • Siepker MJ, Ostrand KG, Cooke SJ, Philipp DP, Wahl DH (2007) A review of the effects of catch-and-release angling on black bass, Micropterus spp.: implications for conservation and management of populations. Fish Manag Ecol 14:91–101

    Article  Google Scholar 

  • Sink TD, Lochmann RT, Fecteau KA (2008) Validation, use, and disadvantages of enzyme-linked immunosorbent assay kits for detection of cortisol in channel catfish, largemouth bass, red pacu, and golden shiners. Fish Physiol Biochem 34:95–101

    Article  CAS  PubMed  Google Scholar 

  • Sokolova IM, Portner HO (2003) Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda : Littorinidae) from different latitudes. J Exp Biol 206(1):195–207

    Article  PubMed  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213(6):912–920

    Article  CAS  PubMed  Google Scholar 

  • Somero GN (2011) Comparative physiology: a “crystal ball” for predicting consequences of global change. Am J Physiol Regul Integr Comp Physiol 301(1):R1–R14

    Article  CAS  PubMed  Google Scholar 

  • Summerfelt RC, Smith LS (1990) Anesthesia, surgery and related techniques. In: Schreck CB, Boyle PB (eds) Methods for fish biology. American Fisheries Society, Bethesda, pp 213–272

    Google Scholar 

  • Suski CD, Killen SS, Morrissey MB, Lund SG, Tufts BL (2003) Physiological changes in largemouth bass caused by live-release angling tournaments in southeastern Ontario. North Am J Fish Manag 23:760–769

    Article  Google Scholar 

  • Suski CD, Killen SS, Kieffer JD, Tufts BL (2006) The influence of environmental temperature and oxygen concentration on the recovery of largemouth bass from exercise: implications for live-release angling tournaments. J Fish Biol 68:120–136

    Article  CAS  Google Scholar 

  • Suski CD, Kieffer JD, Killen SS, Tufts BL (2007) Sub-lethal ammonia toxicity in largemouth bass. Comp Biochem Physiol A 146:381–389

    Article  CAS  Google Scholar 

  • Tanck MWT, Booms GHR, Eding EH, Bonga SEW, Komen J (2000) Cold shocks: a stressor for common carp. J Fish Biol 57(4):881–894

    Article  Google Scholar 

  • Tomanek L, Somero GN (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (Genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J Exp Biol 202:2925–2936

    PubMed  Google Scholar 

  • Vanlandeghem MM, Wahl DH, Suski CD (2010) Physiological responses of largemouth bass to acute temperature and oxygen stressors. Fish Manag Ecol 17(5):414–425

    Article  Google Scholar 

  • Venables BJ, Pearson WD, Fitzpatrick LC (1977) Thermal and metabolic relations of largemouth bass, Micropterus salmoides, from a heated reservoir and a hatchery in north central Texas. Comp Biochem Physiol A Physiol 57(1):93–98

    Article  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77(3):591–925

    CAS  PubMed  Google Scholar 

  • Woods HA, Harrison JF (2002) Interpreting rejections of the beneficial acclimation hypothesis: when is physiological plasticity adaptive? Evolution 56(9):1863–1866

    Article  PubMed  Google Scholar 

  • Zimmerman LC, Standora EA, Spotila JR (1989) Behavioral thermoregulation of largemouth bass (Micropterus salmoides)—response of naïve fish to the thermal-gradient in a nuclear-reactor cooling reservoir. J Therm Biol 14(3):123–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Mulhollem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulhollem, J.J., Suski, C.D. & Wahl, D.H. Response of largemouth bass (Micropterus salmoides) from different thermal environments to increased water temperature. Fish Physiol Biochem 41, 833–842 (2015). https://doi.org/10.1007/s10695-015-0050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0050-0

Keywords

Navigation