Skip to main content
Log in

Changes in protein composition of epidermal mucus in turbot Scophthalmus maximus (L.) under high water temperature

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

To explore the skin mucous of juvenile turbot (Scophthalmus maximus) protein under thermo-treatment in different temperatures (20, 23, 25, and 27 °C), the corresponding proteome maps were constructed by two-dimensional gel electrophoresis (2-DE), from which the peptide mass map with MALDI-TOF-TOF was obtained, and a novel protein of polypeptide was identified by database retrieval. Results show that the proteome maps varied remarkably with temperature, indicating the increase or decrease in protein spot. Totally, 209 protein spots were matched in five maps in temperature using ImageMaster 2D Platinum 6.0. In addition, six unique protein spots were selected and identified with MALDI-TOF-TOF. By searching database for protein identification and function prediction, five proteins were confirmed, of which lectin and cytokeratin are highly potential as protein marker for further research. The information should be useful for better understanding the role of mucus as a component of innate immune system and for identifying genotypes that suit best to the aquiculture environment. These proteins could be used as potential biomarkers to environmental stressors in mucus for providing early warning when fish suffers in a dangerous situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beitinger TL, Bennett WA, McCauley RW (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fishes 58:237–275

    Article  Google Scholar 

  • Bergsson G, Agerberth B, Jörnvall H, Gudmundsson GH (2005) Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). FEBS 272:4960–4969

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein using the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Broers JLV, Ramaekers FCS, Rot MK (1988) Cytokeratins in different types of human lung cancer as monitored by chain-specific monoclonal antibodies. Cancer Res 48:3221–3229

    PubMed  CAS  Google Scholar 

  • Chen J, Wu HQ, Shi YH, Li CH (2009) The effects of environmental salinity on trunk kidney proteome of juvenile ayu (Plecoglossus altivelis). Comp Biochem Physiol D 4:263–267

    Google Scholar 

  • Connolly MH, Hall BK (2008) Embryonic heat shock reveals latent hsp90 translation in zebrafish (Danio rerio). Int J Dev Biol 52:71–79

    Article  PubMed  CAS  Google Scholar 

  • De Veer MJ, Kemp JM, Meeusen ENT (2007) The innate host defence against nematode parasites. Parasite Immunol 29:1–9

    Article  PubMed  Google Scholar 

  • Debus E, Moll R, Franke WW, Weber K, Osborn M (1984) Immunohistochemical distinction of human carcinomas by cytokeratin typing with monoclonal antibodies. Am J Pathol 114:121–130

    PubMed  CAS  Google Scholar 

  • Dominguez M, Takemura A, Tsuchiya M, Nakamura S (2004) Impact of different environmental factors on the circulating immunoglobulin levels in the Nile tilapia (Oreochromis niloticus). Aquaculture 241:491–500

    Article  CAS  Google Scholar 

  • Easy RH, Ross NW (2009) Changes in Atlantic salmon (Salmo salar) epidermal mucus protein composition profiles following infection with sea lice (Lepeophtheirus salmonis). Comp Biochem Physiol D 4:159–167

    Google Scholar 

  • Eckmann L (2003) Mucosal defenses against Giardia. Parasite Immunol 25:259–270

    Article  PubMed  CAS  Google Scholar 

  • Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839

    Article  PubMed  CAS  Google Scholar 

  • Fast MD, Sims DE, Burka JF, Mustafa A, Ross NW (2002) Skin morphology and humoral non-specific defence parameters of mucus and plasma in rainbow trout, coho, and Atlantic salmon. Comp Biochem Physiol 132:645–657

    CAS  Google Scholar 

  • GE-Healthcare (2007) ImageMaster 2D Platinum software version 6.0, User Manual, GeneBio, Swiss-Institute-of-Bioinformatics

  • Herbert BR, Sanchez JC, Bini L, Wilkins MR, Wil-liams KL, Appel RD, Hochstrasser DF (1997) Proteome Research: New Frontiers in Functional Genomics, Springer, Berlin, pp 13–33

  • Irar S, Brini F, Goday A, Masmoudi K, Pagès M (2010) Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D)—a wider perspective of the proteome. J Proteomics 73:1707–1721

    Article  PubMed  CAS  Google Scholar 

  • Kitani Y, Tsukamoto C, Zhang G, Nagai H, Masami I, Ishizaki S, Shimakura K, Siomi K, Nagashimi Y (2006) Identification of an antibacterial protein as l-amino acid oxidase in the skin mucus of rockfish (Sebastes schlegeli). FEBS 274:125–136

    Google Scholar 

  • Liao J, Ku N-O, Omary MB (1997) Stress, apoptosis, and mitosis induce phosphorylation of human keratin 8 at ser-73 in tissues and cultured cells. J Biol Chem 272:17565–17573

    Article  PubMed  CAS  Google Scholar 

  • Maclean WHI, Lane EB (1995) Intermediate filaments in disease. Curr Opin Cell Biol 7:118–125

    Article  Google Scholar 

  • Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151

    Article  PubMed  Google Scholar 

  • Martinez-Antόn A, de Bolόs C, Garrido M, Roca-Ferrer J, Barranco C, Xaubet A, Picado C, Mullol J (2006) Mucin genes have different expression patterns in healthy and diseased upper airway mucosa. Clin Exp Allergy 36:448–457

    Article  Google Scholar 

  • Ndong D, Chen YY, Lin YH, Vaseeharan B (2007) The immune response of tilapia oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures. Fish Shellfish Immunol 22:686–694

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Tsutsui S, Tasumi S, Suetake H (2005) Tandem repeat l-rhamnose-binding lectin from the skin mucus of ponyfish, Leiognathus nuchalis. Biochem Biophys Res Commun 333:463–469

    Article  PubMed  CAS  Google Scholar 

  • Refaii AA, Alix J (2009) Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ. Mol Microbiol 71:748–762

    Article  PubMed  Google Scholar 

  • Rombout JHWM, Taverne N, Van de Kamp M, Taverne-Thiele AJ (1993) Differences in mucus and serum immunoglobulin of carp (Cyprinus carpio L.). Dev Comp Immunol 17:309–317

    Article  PubMed  CAS  Google Scholar 

  • Russell HE, Neil WR (2009) Changes in Atlantic salmon (Salomo salar) epidermal mucus protein composition profiles following infection with sea lice (Lepeophtheirus salmonis). Comp Biochem Physiol D 4:159–167

    Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Tasumi S, Tsutsui S, Okamoto M, Suetake H (2003) Molecular diversity of skin mucus lectins in fish. Comp Biochem Physiol 136:723–730

    Article  Google Scholar 

  • Tasumi S, Yang WJ, Usami T, Tsutsui S, Ohira T, Kawazoe I, Wilder MN, Aida K, Suzuki Y (2004) Characteristics and primary structure of a galectin in the skin mucus of the Japanese eel (Anguilla japonica). Dev Comp Immunol 28:325–335

    Article  PubMed  CAS  Google Scholar 

  • Tilseth S (1990) New marine fish species for cold-water farming. Aquaculture 85:235–245

    Article  Google Scholar 

  • Tsutsui S, Tasumi S, Suetake H, Kikuchi K, Suzuki Y (2005) Demonstration of the mucosal lectins in the epithelial cells of internal and external body surface tissues in pufferfish (Fugu rubripes). Dev Comp Immunol 29:243–253

    Article  PubMed  CAS  Google Scholar 

  • Weinkauf M, Hiddemann W, Dreyling M (2006) Sample pooling in 2-D gel electrophoresis: a new approach to reduce nonspecific expression background. Electrophoresis 27:4555–4558

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Wil-liams KL, Hochstrasser DF (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and aminoacid analysis. Biotechnology (NY) 14:61–65

    Article  CAS  Google Scholar 

  • Zhang M, Hu YH, Sun L (2010) Identification and molecular analysis of a novel C-type lectin from Scophthalmus maximus. Fish Shellfish Immunol 29:82–88

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National “863” plan of China (2012AA10A408-8) and the earmarked fund for Modern Agro-Industry Technology Research System (CARS-50- G01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma Ai-Jun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai-Jun, M., Zhi-hui, H. & Xin-An, W. Changes in protein composition of epidermal mucus in turbot Scophthalmus maximus (L.) under high water temperature. Fish Physiol Biochem 39, 1411–1418 (2013). https://doi.org/10.1007/s10695-013-9795-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9795-5

Keywords

Navigation