Skip to main content

Advertisement

Log in

Health of farmed fish: its relation to fish welfare and its utility as welfare indicator

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This brief review focuses on health and biological function as cornerstones of fish welfare. From the function-based point of view, good welfare is reflected in the ability of the animal to cope with infectious and non-infectious stressors, thereby maintaining homeostasis and good health, whereas stressful husbandry conditions and protracted suffering will lead to the loss of the coping ability and, thus, to impaired health. In the first part of the review, the physiological processes through which stressful husbandry conditions modulate health of farmed fish are examined. If fish are subjected to unfavourable husbandry conditions, the resulting disruption of internal homeostasis necessitates energy-demanding physiological adjustments (allostasis/acclimation). The ensuing energy drain leads to trade-offs with other energy-demanding processes such as the functioning of the primary epithelial barriers (gut, skin, gills) and the immune system. Understanding of the relation between husbandry conditions, allostatic responses and fish health provides the basis for the second theme developed in this review, the potential use of biological function and health parameters as operational welfare indicators (OWIs). Advantages of function- and health-related parameters are that they are relatively straightforward to recognize and to measure and are routinely monitored in most aquaculture units, thereby providing feasible tools to assess fish welfare under practical farming conditions. As the efforts to improve fish welfare and environmental sustainability lead to increasingly diverse solutions, in particular integrated production, it is imperative that we have objective OWIs to compare with other production forms, such as high-density aquaculture. However, to receive the necessary acceptance for legislation, more robust scientific backing of the health- and function-related OWIs is urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acerete L, Balasch JC, Espinosa E, Josa A, Tort L (2004) Physiological responses in Eurasian perch (Perca fluviatilis L.) subjected to stress by transport and handling. Aquaculture 237:167–178

    CAS  Google Scholar 

  • Adams CE, Turnbull JF, Bell A, Bron JE, Huntingford FA (2007) Multiple determinants of welfare in farmed fish: stocking density, disturbance, and aggression in Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 64:336–344

    Google Scholar 

  • Anderson PA, Berzins IK, Fogarty F, Hamlin HJ, Gillette LJ (2011) Sound stress, and sea horses: the consequences of a noisy environment to animal health. Aquaculture 311:129–138

    Google Scholar 

  • Arnold RE, Rice CD (2000) Channel catfish, Ictalurus punctatus, leukocytes secrete immunoreactive adrenal corticotropin hormone (ACTH). Fish Physiol Biochem 22:303–310

    CAS  Google Scholar 

  • Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235

    Google Scholar 

  • Azad AK, Jensen KR, Lin CK (2009) Coastal aquaculture development in Bangladesh: unsustainable and sustainable experiences. Environ Manage 44:800–809

    PubMed  Google Scholar 

  • Bakker R, Dekker K, De Jonge HR, Groot JA (1993) VIP, serotonin, and epinephrine modulate the ion selectivity of tight junctions of goldfish intestine. Am J Physiol 264:R362–R368

    PubMed  CAS  Google Scholar 

  • Barcellos LJG, Kreutz LC, de Souza C, Rodrigues LB, Fioreze I, Quevedo RM, Cericato LM, Soso AB, Fagundes M, Conrad J (2004) Hematological changes in jundia (Rhamdia quelen Quoy and Gaimard Pimelodidae) after acute and chronic stress caused by usual aquacultural management, with emphasis on immunosuppressive effects. Aquaculture 237:229–236

    Google Scholar 

  • Barcellos LJG, Kreutz LC, Quevedo LM (2006) Previous chronic stress does not alter the cortisol response to an additional acute stressor in jundia (Rhamdia quelen, Quoy and Gaimard) fingerlings. Aquaculture 253:317–321

    CAS  Google Scholar 

  • Barnett CW, Pankurst NW (1998) The effects of common laboratory and husbandry practices on the stress reponse of greenback flounder Rhombosolea tapirina (Günther, 1862). Aquaculture 162:313–329

    Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525

    PubMed  CAS  Google Scholar 

  • Berg O (2007) The dual myths of the healthy wild fish and the unhealthy farmed fish. Dis Aquat Org 75:159–164

    Google Scholar 

  • Biering E, Villoin S, Sommerset I, Christie KE (2005) Update on viral vaccines for fish. Dev Biol 121:97–113

    CAS  Google Scholar 

  • Binuramesh C, Prabakaran M, Steinhagen D, Michael RD (2005) Effect of chronic confinement stress on the immune responses in different sex ration groups of Oreochromis mossambicus (Peters). Aquaculture 250:47–59

    CAS  Google Scholar 

  • Biswas AK, Seoka M, Takii K, Maita M, Kumai H (2006) Stress response of red sea bream Pagrus major to acute handling and chronic photoperiod manipulation. Aquaculture 252:566–572

    CAS  Google Scholar 

  • Boerlin P, Reid-Smith RJ (2008) Antimicrobial resistance: its emergence and transmission. Anim Health Res Rev 9:115–126

    PubMed  Google Scholar 

  • Breed AJ (2008) New fish health directive: Council Directive 2006/88/EC of 24th October 2006 on animal health requirements for aquaculture animals and products thereof, and on the prevention and control of certain diseases of aquatic animals. Fish Vet J 10:21–28

    Google Scholar 

  • Broom DM (2007) Welfare in relation to feelings, stress and health. REDVET: 2007, vol VIII, No 12B, http://www.veterinaria.org/revistas/redvet/n121207B/BA018ing.pdf. Accessed 7 April 2011

  • Broom DM, Corke MJ (2002) Effects of disease on farm animal welfare. Acta vet Brno 71:133–136

    Google Scholar 

  • Brun E (2003) Epidemiology. In: Evensen O, Rimstad E, Stagg R, Brun E, Midtlyng P, Johansen LH, Jensen I (eds) IPN in salmonids: a review. FHL & VESO, Trondheim (2003), pp 51–67

  • Cairns MT, Johnson MC, Talbot AT, Pemmasani JK, McNeill RE, Houeix B, Sangrador-Vegas A, Pottinger TG (2008) A cDNA microarray assessment of gene expression in the liver of rainbow trout (Oncorhynchus mykiss) in response to a handling and confinement stressor. Compar Biochem Physiol D Genom Proteom 3:51–66

    CAS  Google Scholar 

  • Chandroo KP, Duncan IJH, Moccia RD (2004) Can fish suffer? Perspectives on sentience, pain, fear and stress. Appl Anim Behav Sci 86:225–250

    Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer G, Zertuche-Gonzalez J, Yarish C, Neefus C (2001) Integrating seaweeds into aquaculture systems: a key towards sustainability. J Phycol 37:975–986

    Google Scholar 

  • Conte FS (2004) Stress and the welfare of cultured fish. Appl Anim Behav Sci 86:205–223

    Google Scholar 

  • Davis KB, Griffin BB, Gray WL (2003) Effect of dietary cortisol on resistance of channel catfish to infection by Ichthyopthirius multifiliis and channel catfish virus disease. Aquaculture 218:121–130

    CAS  Google Scholar 

  • Dawkins MS (2006) A user’s guide to animal welfare science. TREE 2:77–82

    Google Scholar 

  • Demers NE, Bayne CJ (1997) The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Develop Comp Immunol 21:363–373

    CAS  Google Scholar 

  • Dionne M, Miller KM, Dodson JJ, Bernatchez L (2009) MHC standing genetic variation and pathogen resistance in wild Atlantic salmon. Philos Trans R Soc B 364:1555–1565

    CAS  Google Scholar 

  • Dror M, Sinyakov MS, Okun E, Dym M, Sredni B, Avtalion RR (2006) Experimental handling stress as infection-facilitating factor for the goldfish ulcerative disease. Vet Immunol Immunopathol 109:279–287

    PubMed  Google Scholar 

  • Duncan IJ (2005) Science-based assessment of animal welfare: farm animals. Rev Sci Tech 24:483–492

    PubMed  CAS  Google Scholar 

  • Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Develop Comp Immunol 25:827–839

    CAS  Google Scholar 

  • Ellis T, North B, Scott AP, Bromage NR, Porter M, Gadd D (2002) The relationships between stocking density and welfare in farmed rainbow trout. J Fish Biol 61:493–531

    Google Scholar 

  • Espelid S, Lokken GB, Steiro K, Bogwald J (1996) Effects of cortisol and stress on the immune system in Atlantic Salmon (Salmo salar L.). Fish Shellfish Immunol 6:95–110

    Google Scholar 

  • Esteban MA, Rodriguez A, Ayala G, Meseguer J (2004) Effects of high doses of cortisol on innate cellular immune response of seabream (Sparus aurata L.). Gen Comp Endocrinol 137:89–98

    PubMed  CAS  Google Scholar 

  • Evans ML, Neff BD (2009) Major histocompatibility complex heterozygote advantage and widespread bacterial infections in populations of Chook salmon (Oncorhynchus tshawytscha). Mol Ecol 18:4716–4729

    PubMed  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid base regulation and excretion of nitrogenous waste. Physiol Rev 85:97–177

    PubMed  CAS  Google Scholar 

  • Fanouraki E, Divanach P, Pavlidis M (2007) Baseline values for acute and chronic stress indicators in sexually immature red porgy (Pagrus pagrus). Aquaculture 265:294–304

    CAS  Google Scholar 

  • Fivelstad S, Olsen AB, Kloften H, Ski H, Stefansson S (1999) Effects of carbon dioxide on Atlantic salmon (Salmo salar L.) smolts at constant pH in bicarbonate rich freshwater. Aquaculture 178:171–187

    Google Scholar 

  • Fivelstad S, Bergheim A, Hølland PM, Fjermedal AB (2004) Water flow requirements in the intensive production of Atlantic salmon (Salmo salar L.) parr-smolt at two salinity levels. Aquaculture 231:263–277

    Google Scholar 

  • Fridell F, Gadan K, Sundh H, Taranger GL, Glette J, Olsen RE, Sundell K, Evensen Ø (2007) Effect of hyperoxygenation and low water flow on the primary stress response and susceptibility of Atlantic salmon Salmo salar L. to experimental challenge with IPN virus. Aquaculture 270:23–35

    Google Scholar 

  • Gornati R, Papis E, Rimoldi S, Terova S, Saroglia M, Bernardini G (2004) Rearing density influences the expression of stress-related genes in sea bass (Dicentrarchus labrax L.). Gene 341:111–118

    PubMed  CAS  Google Scholar 

  • Gytre T (2004) What is life like for a farmed fish? Marine Research News, Institute of Marine Research, Bergen, Norway, http://www.imr.no/english/__data/page/6335/What_is_Life_Like_for_a_Farmed_Fish.pdf

  • Hosoya S, Johnson SC, Iwama GK, Gamperl AK, Afonso LOB (2007) Changes in free and total plasma cortisol levels in juvenile haddock (Melanogrammus aeglefinus) exposed to long-term handling stress. Comp Biochem Physiol A Mol Integrat Physiol 146A:78–86

    CAS  Google Scholar 

  • Huntingford FA, Adams C, Braithwaite VA, Kadri S, Pottinger TG, Sandoe P, Turnbull JF (2006) Current issues in fish welfare. J Fish Biol 68:332–372

    Google Scholar 

  • Iguchi K, Ogawa K, Nagae M, Ito F (2003) The influence of rearing density on stress response and disease susceptibility of ayu (Plecoglossus altivelis). Aquaculture 220:515–523

    Google Scholar 

  • Iwama GK, Pickering AD, Sumpter JP, Schreck CB (1997) Fish stress and health in aquaculture. Cambridge University Press, Cambridge

    Google Scholar 

  • Jentoft S, Aastveit AH, Torjesen A, Andersen O (2005) Effects of stress on growth, cortisol and glucose levels in non-domesticated Eurasian perch (Perca fluviatilis) and domesticated rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 141A:353–358

    CAS  Google Scholar 

  • Johansen LH, Sommer AI (2001) Infectious pancreatic necrosis virus infection in Atlantic salmon Salmo salar post-smolts affects the outcome of secondary infections with infectious salmon anaemia virus or Vibrio salmonicida. Dis Aquat Organ 47:109–117

    PubMed  CAS  Google Scholar 

  • Johansson D, Juell J-E, Oppedal F, Stiansen J-E, Ruohonen K (2007) The influence of the pycnocline and cage resistance on current flow oxygen flux and swimming behaviour of Atlantic salmon (Salmo salar L.) in production cages. Aquaculture 265:271–287

    Google Scholar 

  • Korte SM, Olivier B, Koolhaas JM (2007) A new animal welfare concept based on allostasis. Physiol Behav 92:422–428

    PubMed  CAS  Google Scholar 

  • Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 148:132–149

    PubMed  CAS  Google Scholar 

  • Lankford SE, Adams TE, Cech JJJ (2003) Time of day and water temperature modify the physiological stress response in green sturgeon, Acipenser medirostris. Comp Biochem Physiol 135A:291–302

    CAS  Google Scholar 

  • Lupatsch I, Santos GA, Schrama JW, Verreth JAJ (2010) Effect of stocking density and feeding level on energy expenditure and stress responsiveness in European sea bass, Dicentarchus labrax. Aquaculture 298:245–250

    Google Scholar 

  • Mazur CF, Iwama GKK (1993) Handling and crowding stress reduces the number of plaque-forming cells in Atlantic salmon. J Aquat Animal Health 5:98–101

    Google Scholar 

  • McCormick SD, Shrimpton JM, Carey JB, O’Dea MF, Sloan KE, Moriyama S, Bjornsson BT (1998) Repeated acute stress reduces growth rate of Atlantic salmon parr and alters plasma levels of growth hormone, insulin-like growth factor I and cortisol. Aquaculture 168:221–235

    CAS  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    PubMed  Google Scholar 

  • Moberg GP (2000) Biological responses to stress: implications for animal welfare. In: Moberg GP, Mench JA (eds) The biology of animal stress: basic principles and implications for animal welfare. CAB International, Wallingford, pp 1–21

  • Mommsen T, Vijayan M, Moon T (1999) Cortisol in teleost: dynamics, mechanisms of action and metabolic regulation. Rev Fish Biol Fish 9:211–268

    Google Scholar 

  • Murray AG, Peeler EJ (2005) A framework for understanding the potential for emerging diseases in aquaculture. Prev Vet Med 67:223–235

    PubMed  Google Scholar 

  • Neori A (2008) Essential role of seaweed cultivation in integrated multi-trophic aquaculture farms for global expansion of mariculture: an analysis. J Appl Phycol 20:567–570

    Google Scholar 

  • Niklasson L, Sundh H, Fridell F, Taranger GL, Sundell K (2011) Disturbance of the intestinal mucosal immune system caused by prolonged husbandry stress in farmed Atlantic salmon (Salmo salar). Fish Shellfish Immunol (submitted)

  • Nolan DT, Reilly P, Wendelaar Bonga SE (1999) Infection with low numbers of the sea louse Lepeophtheirus salmonis induces stress-related effects in post-smolt Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 56:947–959

    Google Scholar 

  • Olsen RE, Sundell K, Hansen T, Hemre GI, Myklebust R, Mayhew TM, Ringø E (2002) Acute stress alters the intestinal lining of Atlantic salmon, Salmo salar L.: an electron microscopical study. Fish Physiol Biochem 26:211–221

    CAS  Google Scholar 

  • Olsen RE, Sundell K, Mayhew TM, Myklebust R, Ringø E (2005) Acute stress alters intestinal function of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture 250:480–495

    CAS  Google Scholar 

  • Olsen RE, Sundell K, Ringø E, Myklebust R, Hemre G-I, Hansen T, Karlsen Ø (2008) The acute stress response in fed and food deprived Atlantic cod, Gadus morhua L. Aquaculture 280:232–241

    Google Scholar 

  • Ortuno J, Esteban MA, Meseguer J (2002) Effects of phenoxyethanol on the innate immune system of gilthead seabream (Sparus aurata L.) exposed to crowding stress. Vet Immunol Immunopathol 89:29–36

    PubMed  CAS  Google Scholar 

  • Peeler EJ, Murray AG, Thebault A, Brun E, Giovaninni A, Thrush MA (2007) The application of risk analysis in aquatic animal health management. Prev Vet Med 81:3–20

    PubMed  CAS  Google Scholar 

  • Peters G (1982) The effect of stress on the stomach of the European eel, Anguilla anguilla L. J Fish Biol 21:497–512

    Google Scholar 

  • Pigneguy M (2008) Tapping into sustainability. NZ Aquaculture 22:12–14

    Google Scholar 

  • Pottinger TG, Carrick TR (1999a) A comparison of plasma glucose and plasma cortisol as selection markers for high and low stress-responsiveness in female rainbow trout. Aquaculture 175:351–363

    CAS  Google Scholar 

  • Pottinger TG, Carrick TR (1999b) Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen Comp Endocrinol 116:122–132

    PubMed  CAS  Google Scholar 

  • Pottinger TG, Carrick TR, Appleby A, Yeomans WE (2000) High blood cortisol levels and low cortisol receptor affinity: Is the chub, Leuciscus cephalus, a cortisol-resistant teleost? Gen Comp Endocrinol 120:108–117

    PubMed  CAS  Google Scholar 

  • Press CM, Evensen Ø (1999) The morphology of the immune system in teleost fishes. Fish Shellfish Immunol 9:309–318

    Google Scholar 

  • Pruett SB (2003) Stress and the immune system. Pathophysiology 9:133–153

    PubMed  CAS  Google Scholar 

  • Pulkkinen K, Suomalainen LR, Read AF, Ebert D, Rintamäki P, Valtonen ET (2010) Intensive fish farming and the evolution of pathogen virulence:the case of columnaris disease in Finland. Proc R Soc B 277:593–600

    PubMed  CAS  Google Scholar 

  • Roger PA (2008) The impact of disease and disease prevention on sheep welfare. Small Rumin Res 76:104–111

    Google Scholar 

  • Rotllant J, Pavlidis M, Kentouri M, Abad ME, Tort L (1997) Non-specific immune responses in the red porgy Pagrus pagrus after crowding stress. Aquaculture 156:279–290

    Google Scholar 

  • Ruane NM, Komen H (2003) Measuring cortisol in the water as an indicator of stress caused by increased loading density in common carp (Cyprinus carpio). Aquaculture 218:685–693

    CAS  Google Scholar 

  • Ruane NM, Wendelaar Bonga SE, Balm PHM (1999) Differences between rainbow trout and brown trout in the regulation of the pituitary-interrenal axis and physiological performance during confinement. Gen Comp Endocrinol 115:210–219

    PubMed  CAS  Google Scholar 

  • Ruane NM, HJTh Goos, Komen J (2007) Stress-induced facilitation of the cortisol response in 17α-hydroxylase deficient XX mas-1/mas-1 carp (Cyprinus carpio). Gen Comp Endocrinol 150:473–479

    PubMed  CAS  Google Scholar 

  • Saeij JPJ, Verburg-van Kemenade LBM, van Muiswinkel WB, Wiegertjes GF (2003) Daily handling stress reduces resistance of carp to Trypanoplasma borreli: in vitro modulatory effects of cortisol on leukocyte function and apoptosis. Develop Comp Immunol 27:233–245

    CAS  Google Scholar 

  • Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol 286:C1213–C1228

    CAS  Google Scholar 

  • Schram E, Roques JAC, Abbink W, Spnings T, de Vries P, Biernan S, van de Vis H, Flik G (2010) The impact of elevated water ammonia concentration on physiology, growth and feed intake of African catfish (Clarias gariepinus). Aquaculture 306:108–115

    CAS  Google Scholar 

  • Segner H, Marthaler R, Linnenbach M (1988) Growth, aluminium uptake and mucous cell morphometrics of brown trout, Salmo trutta, early life stages in low pH water. Environl Biol Fish 21:153–159

    Google Scholar 

  • Segner H, Eppler E, Reinecke M (2006) The impact of environmental hormonally active substances on the endocrine and immune systems of fish. In: Reinecke M, Zaccone G, Kapoor BG (eds) Fish endocrinology. Science Publishers, Enfield (NH), pp 809–865

    Google Scholar 

  • Shephard KL (1994) Functions for fish mucus. Rev Fish Biol Fish 4:401–429

    Google Scholar 

  • Small BC, Bilodeau AL (2005) Effects of cortisol and stress on channel catfish (Ictalurus punctatus) pathogen susceptibility and lysozyme activity following exposure to Edwardsiella ictaluri. Gen Comp Endocrinol 142:256–262

    PubMed  CAS  Google Scholar 

  • Stott GH (1981) What is animal stress and how is it measured? J Anim Sci 52:150–153

    PubMed  CAS  Google Scholar 

  • Strand A, Magnhagen C, Alanara A (2007) Effects of repeated disturbances on feed intake, growth rates and energy expenditures of juvenile perch, Perca fluviatilis. Aquaculture 265:163–168

    Google Scholar 

  • Sturm A, Segner H (2005) P-glycoprotein and xenobiotic efflux transport in fish. In: Mommsen TP, Moon TW (eds) Biochemistry and molecular biology of fishes, vol VI. Environmental toxicology. Elsevier, Amsterdam, pp 496–533

    Google Scholar 

  • Sundh H (2009) Chronic stress and intestinal barrier function: Implications for infection and inflammation in intensive salmon aquaculture. Doctoral thesis, University of Gothenburg, Gothenburg, Sweden, http://hdl.handle.net/2077/20826

  • Sundh H, Olsen RE, Fridell F, Gadan K, Evensen Ø, Glette J, Taranger GL, Sundell K (2009) The intestinal primary barrier in Atlantic salmon (Salmo salar): effect of hyperoxygenation and reduced flow in freshwater and subsequent IPN virus challenge in sea water. J Fish Dis 32:687–698

    PubMed  CAS  Google Scholar 

  • Sundh H, Kvamme BO, Fridell F, Olsen RE, Ellis T, Taranger GL, Sundell K (2010) Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator. BMC Physiol 10:22. doi:10.1186/1472-6793-10-22

  • Sundh H, Fridell F, Ellis T, Niklasson L, Taranger GL, Pettersen EF, Wergeland HI, Sundell K (2011) High stocking density and poor water quality disturb physical and immunological barriers in the Atlantic salmon (Salmo salar, L.) intestine (in preparation)

  • Szakolczai J (1997) Histopathological changes induced by environmental stress in common carp, Japanese coloured carp, European eel, and African catfish. Acta Vet Hung 45:1–10

    PubMed  CAS  Google Scholar 

  • Terova G, Gornati R, Rimoldi S, Bernardini G, Saroglia M (2005) Quantification of glucocorticoid receptor in sea bass (Dicentrarchus labrax) reared at high stocking density. Gene 357:144–151

    Google Scholar 

  • Thomas S, Kinkead R, Walsh PJ, Wood CM, Perry SF (1991) Desensitization of adrenaline-induced red blood cell H+ extrusion in vitro after chronic exposure of rainbow trout to moderate environmental hypoxia. J Exp Biol 156:233–248

    CAS  Google Scholar 

  • Trenzado C, Carrick ETR, Pottinger TG (2003) Divergence of endocrine and metabolic responses to stress in two rainbow trout lines selected for differing cortisol responsiveness to stress. Gener Compe Endocrinol 133:332–340

    CAS  Google Scholar 

  • Trenzado CE, Morales AC, de la Higuera M (2006) Physiological effects of crowding in rainbow trout, Oncorhynchus mykiss, selected for low and high stress responsiveness. Aquaculture 258:583–593

    Google Scholar 

  • Turnbull JF, Kadri S (2007) Safeguarding the many guises of farmed fish welfare. Dis Aquat Org 75:173–182

    PubMed  CAS  Google Scholar 

  • Vazzana M, Cammarata M, Cooper EL, Parrinello DN (2002) Confinement stress in sea bass (Dicentrarchus labrax) depresses peritoneal leukocyte cytotoxicity. Aquaculture 210:231–243

    CAS  Google Scholar 

  • Verburg-Van kemenade BML, Nowak B, Engelsma MY, Weyts FAA (1999) Differential effects of cortisol on apoptosis and proliferation of carp B-lymphocytes from head kidney, spleen and blood. Fish Shellfish Immunol 9:405–415

    CAS  Google Scholar 

  • Verburg-Van Kemenade BML, Stolte EH, Metz JR, Chadzinska M (2009) Neuroendocrine-immune interactions in teleost fish. In: Bernier NJ, van der Kraak G, Farrell AP, Brauner CJ (eds) Fish neuroendocrinology. Elsevier, Amsterdam

  • Vijayan M, Pereira C, Grau EG, Iwama GK (1997) Metabolic responses associated with confinement stress in Tilapia: The role of cortisol. Comp Biochem Physiol 116C:89–95

    Google Scholar 

  • Volpato GL, Goncalves-de-Freitas E, Fernandes-de-Castilho M (2007) Insights into the concept of fish welfare. Dis Aquat Org 75:165–171

    PubMed  Google Scholar 

  • Wall T (2008) Disease and medicines—the welfare implications. In: Branson EJ (ed) Fish welfare. Blackwell, Oxford, pp 195–201

    Google Scholar 

  • WEALTH project no 501984 (2008) Welfare and Health in sustainable aquaculture

  • Wedemeyer GA (1996) Physiology of fish in intensive culture systems. Chapman & Hall, ITP, New York

    Google Scholar 

  • Welker TL, McNulty ST, Klesius PH (2007) Effect of sublethal hypoxia on the immune response and susceptibility of channel catfish, Ictalurus punctatus, to enteric septicaemia. J World Aquacult Soc 38:12–23

    Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–630

    PubMed  CAS  Google Scholar 

  • Wendelaar Bonga SE, Meis S (1981) Effects of external osmolality, calcium and prolactin on growth and differentiation of the epidermal cells of the cichlid teleost Sarotherodon mossambicus. Cell Tissue Res 221:109–123

    PubMed  CAS  Google Scholar 

  • Weyts FA, Cohen AN, Flik G, Verburg-van Kemenade BML (1999) Interactions between the immune system and the hypothalamo-pituitary-interrenal axis in fish. Fish Shellfish Immunol 9:1–20

    Google Scholar 

  • Wilkinson RJ, Porter M, Woolcott H, Longland R, Carragher JF (2006) Effects of aquaculture related stressors and nutritional restriction on circulating growth factors (GH, IGF-I and IGF-II) in Atlantic salmon and rainbow trout. Comp Biochem Physiol Part A Mol Integr Physiol 145:214–224

    Google Scholar 

  • Wolffrom T (2004) Farmed fish and welfare EU commission DG general for fisheries. Research and Scientific Analysis Unit, Brussels

    Google Scholar 

  • Yada T, Nakanishi T (2002) Interaction between endocrine and immune systems in fish. Int Rev Cytol 220:35–92

    PubMed  CAS  Google Scholar 

  • Yin Z, Lam TJ, Sin YM (1995) The effects of crowding stress on the non-specific immuneresponse in fancy carp (Cyprinus carpio L.). Fish Shellfish Immunol 5:519–529

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Segner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segner, H., Sundh, H., Buchmann, K. et al. Health of farmed fish: its relation to fish welfare and its utility as welfare indicator. Fish Physiol Biochem 38, 85–105 (2012). https://doi.org/10.1007/s10695-011-9517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-011-9517-9

Keywords

Navigation