Skip to main content

Advertisement

Log in

POLE mutations in families predisposed to cutaneous melanoma

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Germline mutations in the exonuclease domain of POLE have been shown to predispose to colorectal cancers and adenomas. POLE is an enzyme involved in DNA repair and chromosomal DNA replication. In order to assess whether such mutations might also predispose to cutaneous melanoma, we interrogated whole-genome and exome data from probands of 34 melanoma families lacking pathogenic mutations in known high penetrance melanoma susceptibility genes: CDKN2A, CDK4, BAP1, TERT, POT1, ACD and TERF2IP. We found a novel germline mutation, POLE p.(Trp347Cys), in a 7-case cutaneous melanoma family. Functional assays in S. pombe showed that this mutation led to an increased DNA mutation rate comparable to that seen with a Pol ε mutant with no exonuclease activity. We then performed targeted sequencing of POLE in 1243 cutaneous melanoma cases and found that a further ten probands had novel or rare variants in the exonuclease domain of POLE. Although this frequency is not significantly higher than that in unselected Caucasian controls, we observed multiple cancer types in the melanoma families, suggesting that some germline POLE mutations may predispose to a broad spectrum of cancers, including melanoma. In addition, we found the first mutation outside the exonuclease domain, p.(Gln520Arg), in a family with an extensive history of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gruis NA, van der Velden PA, Sandkuijl LA et al (1995) Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nat Genet 10(3):351–353. doi:10.1038/ng0795-351

    Article  CAS  PubMed  Google Scholar 

  2. Hussussian CJ, Struewing JP, Goldstein AM et al (1994) Germline p16 mutations in familial melanoma. Nat Genet 8(1):15–21. doi:10.1038/ng0994-15

    Article  CAS  PubMed  Google Scholar 

  3. MacGeoch C, Bishop JA, Bataille V et al (1994) Genetic heterogeneity in familial malignant melanoma. Hum Mol Genet 3(12):2195–2200

    Article  CAS  PubMed  Google Scholar 

  4. Soufir N, Avril MF, Chompret A et al (1998) Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum Mol Genet 7(2):209–216

    Article  CAS  PubMed  Google Scholar 

  5. Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA. http://evs.gs.washington.edu/EVS/. Accessed 27 Feb 2014, Cited 14 June 2013

  6. Walker GJ, Hussussian CJ, Flores JF et al (1995) Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Hum Mol Genet 4(10):1845–1852

    Article  CAS  PubMed  Google Scholar 

  7. Zuo L, Weger J, Yang Q et al (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12(1):97–99. doi:10.1038/ng0196-97

    Article  CAS  PubMed  Google Scholar 

  8. Robles-Espinoza CD, Harland M, Ramsay AJ et al (2014) POT1 loss-of-function variants predispose to familial melanoma. Nat Genet. doi:10.1038/ng.2947

    PubMed Central  PubMed  Google Scholar 

  9. Aoude LG, Pritchard AL, Robles-Espinoza CD et al (2015) Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. J Natl Cancer Inst. doi:10.1093/jnci/dju408

    PubMed  Google Scholar 

  10. Palles C, Cazier JB, Howarth KM et al (2013) Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 45(2):136–144. doi:10.1038/ng.2503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Baxter AJ, Hughes MC, Kvaskoff M et al (2008) The Queensland Study of Melanoma: environmental and genetic associations (Q-MEGA); study design, baseline characteristics, and repeatability of phenotype and sun exposure measures. Twin Res Hum Genet 11(2):183–196. doi:10.1375/twin.11.2.183

    Article  PubMed Central  PubMed  Google Scholar 

  12. Aitken JF, Green AC, MacLennan R, Youl P, Martin NG (1996) The Queensland Familial Melanoma Project: study design and characteristics of participants. Melanoma Res 6(2):155–165

    Article  CAS  PubMed  Google Scholar 

  13. Whiteman DC, Valery P, McWhirter W, Green AC (1997) Risk factors for childhood melanoma in Queensland, Australia. Int J Cancer 70(1):26–31

    Article  CAS  PubMed  Google Scholar 

  14. Whiteman D, Valery P, McWhirter W, Green A (1995) Incidence of cutaneous childhood melanoma in Queensland, Australia. Int J Cancer 63(6):765–768

    Article  CAS  PubMed  Google Scholar 

  15. Youl P, Aitken J, Hayward N et al (2002) Melanoma in adolescents: a case-control study of risk factors in Queensland, Australia. Int J Cancer 98(1):92–98

    Article  CAS  PubMed  Google Scholar 

  16. Whiteman DC, Parsons PG, Green AC (1998) p53 expression and risk factors for cutaneous melanoma: a case-control study. Int J Cancer 77(6):843–848

    Article  CAS  PubMed  Google Scholar 

  17. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760. doi:10.1093/bioinformatics/btp324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed Central  PubMed  Google Scholar 

  20. Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339(6122):959–961. doi:10.1126/science.1230062

    Article  CAS  PubMed  Google Scholar 

  21. Kamb A, Shattuck-Eidens D, Eeles R et al (1994) Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 8(1):23–26. doi:10.1038/ng0994-22

    Article  CAS  PubMed  Google Scholar 

  22. Bahuau M, Vidaud D, Jenkins RB et al (1998) Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res 58(11):2298–2303

    CAS  PubMed  Google Scholar 

  23. Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of the fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  CAS  PubMed  Google Scholar 

  24. Bahler J, Wu JQ, Longtine MS et al (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14(10):943–951

    Article  CAS  PubMed  Google Scholar 

  25. Marti TM, Mansour AA, Lehmann E, Fleck O (2003) Different frameshift mutation spectra in non-repetitive DNA of MutSalpha- and MutLalpha-deficient fission yeast cells. DNA Repair (Amst) 2(5):571–580

    Article  CAS  Google Scholar 

  26. Hall BM, Ma CX, Liang P, Singh KK (2009) Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria–Delbruck fluctuation analysis. Bioinformatics 25(12):1564–1565. doi:10.1093/bioinformatics/btp253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Shevelev IV, Hubscher U (2002) The 3′5′ exonucleases. Nat Rev Mol Cell Biol 3(5):364–376. doi:10.1038/nrm804

    Article  CAS  PubMed  Google Scholar 

  28. Jain R, Rajashankar KR, Buku A et al (2014) Crystal structure of yeast DNA polymerase epsilon catalytic domain. PLoS ONE 9(4):e94835. doi:10.1371/journal.pone.0094835

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hogg M, Osterman P, Bylund GO et al (2014) Structural basis for processive DNA synthesis by yeast DNA polymerase varepsilon. Nat Struct Mol Biol 21(1):49–55. doi:10.1038/nsmb.2712

    Article  CAS  PubMed  Google Scholar 

  30. Morrison A, Sugino A (1994) The 3′ → 5′ exonucleases of both DNA polymerases δ and ε participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol Gen Genet 242(3):289–296

    Article  CAS  PubMed  Google Scholar 

  31. Albertson TM, Ogawa M, Bugni JM et al (2009) DNA polymerase epsilon and delta proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci USA 106(40):17101–17104. doi:10.1073/pnas.0907147106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rohlin A, Zagoras T, Nilsson S et al (2014) A mutation in POLE predisposing to a multi-tumour phenotype. Int J Oncol 45(1):77–81. doi:10.3892/ijo.2014.2410

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the participants of this study. This project was funded by the National Health and Medical Research Council of Australia (NHMRC), the Genomic Medicine and Cancer Themes of the Oxford NIHR Comprehensive Biomedical Research Centre, the Oxford Experimental Cancer Medicine Centre, Cancer Research UK Programme Grant (to IT), and core funding to the Wellcome Trust Centre for Human Genetics from the Wellcome Trust (090532/Z/09/Z). LGA was supported by an Australia and New Zealand Banking Group Limited Trustees Ph.D. scholarship. NKH and GWM are supported by fellowships from the NHMRC. Work in SEK’s group is supported by a MRC Grant MR/L016591/1. ALP is supported by Cure Cancer Australia and Rio Tinto Ride to Conquer Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren G. Aoude.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Lauren G. Aoude, Ellen Heitzer, Stephen Kearsey and Nicholas K. Hayward have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoude, L.G., Heitzer, E., Johansson, P. et al. POLE mutations in families predisposed to cutaneous melanoma. Familial Cancer 14, 621–628 (2015). https://doi.org/10.1007/s10689-015-9826-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-015-9826-8

Keywords

Navigation