Skip to main content

Advertisement

Log in

Association of the BRCA1 promoter polymorphism rs11655505 with the risk of familial breast and/or ovarian cancer

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Germline mutations in the BRCA1 tumor suppressor gene predispose affected individuals to breast cancer; however, incomplete cancer penetrance and the presence of phenocopies in BRCA1 families also indicate genetic and environmental modifiers of breast cancer risk. In this study, we have tested the single nucleotide polymorphism rs1655505 of the BRCA1 promoter, as candidate for the modifier of breast cancer risk. The polymorphic variants were genotyped in BRCA1-negative (729), familial breast and/or ovarian cancer cases (FBOC), including cases with a reported maternal history (154), nonfamilal (sporadic) cases (600), hereditary breast/ovarian cases with BRCA1 mutations (190) and population controls (1,590) from Central Poland. An association with the risk of FBOC was observed for the minor (T) allele and (TT) genotype (T: p = 0.006, OR = 1.40, 95 % CI = 1.10–1.79; TT: p = 0.001, OR = 2.23, 95 % CI = 1.37–3.62) in female cases with a reported maternal history, specifically in women with the onset of disease after 50 years of age (T: p = 0.004, OR = 1.77, 95 % CI = 1.20–2.62; TT: p = 0.001, OR = 3.7, 95 % CI = 1.62–8.46). The presented evidence suggests a need to conduct larger studies on the association between genetic variations at the BRCA1 promoter and the breast cancer risk, according to maternal/paternal lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan KY-K, Liu W, Long J-R, Yip S-P, Chan S-Y et al (2009) Functional polymorphisms in the BRCA1 promoter influence transcription and are associated with decreased risk for breast cancer in Chinese women. J Med Genet 46:32–39. doi:10.1136/jmg.2007.057174

    Article  PubMed  CAS  Google Scholar 

  2. Pavlicek A, Noskov VN, Kouprina N, Barrett JC, Jurka J et al (2004) Evolution of the tumor suppressor BRCA1 locus in primates: implications for cancer predisposition. Hum Mol Genet 13:2737–2751. doi:10.1093/hmg/ddh301

    Article  PubMed  CAS  Google Scholar 

  3. Stankiewicz P, Shaw CJ, Withers M, Inoue K, Lupski JR (2004) Serial segmental duplications during primate evolution result in complex human genome architecture. Genome Res 14:2209–2220. doi:10.1101/gr.2746604

    Article  PubMed  CAS  Google Scholar 

  4. Puget N, Gad S, Perrin-Vidoz L, Sinilnikova OM, Stoppa-Lyonnet D et al (2002) Distinct BRCA1 rearrangements involving the BRCA1 pseudogene suggest the existence of a recombination hot spot. Am J Hum Genet 70:858–865. doi:10.1086/339434

    Article  PubMed  CAS  Google Scholar 

  5. Butcher DT, Mancini-DiNardo DN, Archer TK, Rodenhiser DI (2004) DNA binding sites for putative methylation boundaries in the unmethylated region of the BRCA1 promoter. Int J Cancer 111:669–678. doi:10.1002/ijc.20324

    Article  PubMed  CAS  Google Scholar 

  6. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067. doi:10.1073/pnas.0400782101

    Article  PubMed  CAS  Google Scholar 

  7. Singh NP, Madabhushi SR, Srivastava S, Senthilkumar R, Neeraja C et al (2011) Epigenetic profile of the euchromatic region of human Y chromosome. Nucleic Acids Res 39:3594–3606. doi:10.1093/nar/gkq1342

    Article  PubMed  CAS  Google Scholar 

  8. Lin JM, Collins PJ, Trinklein ND, Fu Y, Xi H et al (2007) Transcription factor binding and modified histones in human bidirectional promoters. Genome Res 17:818–827. doi:10.1101/gr.5623407

    Article  PubMed  CAS  Google Scholar 

  9. Ishihara K, Oshimura M, Nakao M (2006) CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol Cell 23:733–742. doi:10.1016/j.molcel.2006.08.008

    Article  PubMed  CAS  Google Scholar 

  10. Cuddapah S, Jothi R, Schones DE, Roh T-Y, Cui K et al (2009) Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 19:24–32. doi:10.1101/gr.082800.108

    Article  PubMed  CAS  Google Scholar 

  11. Verderio P, Pizzamiglio S, Southey MC, Spurdle AB, Hopper JL et al (2010) A BRCA1 promoter variant (rs11655505) and breast cancer risk. J Med Genet 47:268–270. doi:10.1136/jmg.2009.073544

    Article  PubMed  CAS  Google Scholar 

  12. Cox DG, Simard J, Sinnett D, Hamdi Y, Soucy P et al (2011) Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers. Hum Mol Genet 20:4732–4747. doi:10.1093/hmg/ddr388

    Article  PubMed  CAS  Google Scholar 

  13. Gaj P, Kluska A, Nowakowska D, Bałabas A, Piątkowska M et al (2012) High frequency of BRCA1 founder mutations in Polish women with nonfamilial breast cancer. Fam Cancer. Available: http://www.ncbi.nlm.nih.gov/pubmed/22864640. Accessed 24 Sept 2012

  14. Brozek I, Cybulska C, Ratajska M, Piatkowska M, Kluska A et al (2011) Prevalence of the most frequent BRCA1 mutations in Polish population. J Appl Genet 52:325–330. doi:10.1007/s13353-011-0040-6

    Article  PubMed  Google Scholar 

  15. Dikow N, Nygren AO, Schouten JP, Hartmann C, Krämer N et al (2007) Quantification of the methylation status of the PWS/AS imprinted region: comparison of two approaches based on bisulfite sequencing and methylation-sensitive MLPA. Mol Cell Probes 21:208–215. doi:10.1016/j.mcp.2006.12.002

    Article  PubMed  CAS  Google Scholar 

  16. Kanber D, Buiting K, Zeschnigk M, Ludwig M, Horsthemke B (2009) Low frequency of imprinting defects in ICSI children born small for gestational age. Eur J Hum Genet 17:22–29. doi:10.1038/ejhg.2008.177

    Article  PubMed  CAS  Google Scholar 

  17. Chen X, Weaver J, Bove BA, Vanderveer LA, Weil SC et al (2008) Allelic imbalance in BRCA1 and BRCA2 gene expression is associated with an increased breast cancer risk. Hum Mol Genet 17:1336–1348. doi:10.1093/hmg/ddn022

    Article  PubMed  CAS  Google Scholar 

  18. Shen J, Medico L, Zhao H (2011) Allelic imbalance in BRCA1 and BRCA2 gene expression and familial ovarian cancer. Cancer Epidemiol Biomarkers Prev 20:50–56. doi:10.1158/1055-9965.EPI-10-0720

    Article  PubMed  CAS  Google Scholar 

  19. Colditz GA, Bain CJ (2001) Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58, 209 women with breast cancer and 101, 986 women without the disease. Lancet 358:1389–1399. doi:10.1016/S0140-6736(01)06524-2

    Article  Google Scholar 

  20. McCuaig JM, Greenwood CMT, Shuman C, Chitayat D, Murphy KJ et al (2011) Breast and ovarian cancer: the forgotten paternal contribution. J Genet Couns 20:442–449. doi:10.1007/s10897-011-9368-7

    Article  PubMed  Google Scholar 

  21. Macklin MT (1959) Comparison of the number of breast-cancer deaths observed in relatives of breast-cancer patients, and the number expected on the basis of mortality rates. J Natl Cancer Inst 22:927–951

    PubMed  CAS  Google Scholar 

  22. Couto E, Hemminki K (2007) Estimates of heritable and environmental components of familial breast cancer using family history information. Br J Cancer 96:1740–1742. doi:10.1038/sj.bjc.6603753

    Article  PubMed  CAS  Google Scholar 

  23. Quillin JM, Ramakrishnan V, Borzelleca J, Bodurtha J, Bowen D et al (2006) Paternal relatives and family history of breast cancer. Am J Prev Med 31:265–268. doi:10.1016/j.amepre.2006.05.002

    Article  PubMed  Google Scholar 

  24. Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P et al (2009) Parental origin of sequence variants associated with complex diseases. Nature 462:868–874. doi:10.1038/nature08625

    Article  PubMed  CAS  Google Scholar 

  25. Raney BJ, Cline MS, Rosenbloom KR, Dreszer TR, Learned K et al (2011) ENCODE whole-genome data in the UCSC genome browser (2011 update). Nucleic Acids Res 39:D871–D875. doi:10.1093/nar/gkq1017

    Article  PubMed  CAS  Google Scholar 

  26. Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137:1194–1211. doi:10.1016/j.cell.2009.06.001

    Article  PubMed  Google Scholar 

  27. Handoko L, Xu H, Li G, Ngan CY, Chew E et al (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet 43:630–638. doi:10.1038/ng.857

    Article  PubMed  CAS  Google Scholar 

  28. Lienert F, Wirbelauer C, Som I, Dean A, Mohn F et al (2011) Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet 43:1091–1097. doi:10.1038/ng.946

    Article  PubMed  CAS  Google Scholar 

  29. Martinowich K, Hattori D, Wu H, Fouse S, He F et al (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893. doi:10.1126/science.1090842

    Article  PubMed  CAS  Google Scholar 

  30. Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P et al (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Trans Med 2:49ra67. doi:10.1126/scitranslmed.3001262

    Article  Google Scholar 

  31. Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T et al (2012) Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet 21:371–383. doi:10.1093/hmg/ddr472

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the patients for their participation in this study. The study was supported by Maria-Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Bielinska.

Additional information

Beata Bielinska, Pawel Gaj and Anna Kluska contributed equally to this work.

Jan Steffen—deceased

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielinska, B., Gaj, P., Kluska, A. et al. Association of the BRCA1 promoter polymorphism rs11655505 with the risk of familial breast and/or ovarian cancer. Familial Cancer 12, 691–698 (2013). https://doi.org/10.1007/s10689-013-9647-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-013-9647-6

Keywords

Navigation