Skip to main content
Log in

Automatic stellar spectral classification via sparse representations and dictionary learning

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Stellar classification is an important topic in astronomical tasks such as the study of stellar populations. However, stellar classification of a region of the sky is a time-consuming process due to the large amount of objects present in an image. Therefore, automatic techniques to speed up the process are required. In this work, we study the application of a sparse representation and a dictionary learning for automatic spectral stellar classification. Our dataset consist of 529 calibrated stellar spectra of classes B to K, belonging to the Pulkovo Spectrophotometric catalog, in the 3400−5500Å range. These stellar spectra are used for both training and testing of the proposed methodology. The sparse technique is applied by using the greedy algorithm OMP (Orthogonal Matching Pursuit) for finding an approximated solution, and the K-SVD (K-Singular Value Decomposition) for the dictionary learning step. Thus, sparse classification is based on the recognition of the common characteristics of a particular stellar type through the construction of a trained basis. In this work, we propose a classification criterion that evaluates the results of the sparse representation techniques and determines the final classification of the spectra. This methodology demonstrates its ability to achieve levels of classification comparable with automatic methodologies previously reported such as the Maximum Correlation Coefficient (MCC) and Artificial Neural Networks (ANN).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE T. Signal Proces. 54(11), 4311–4322 (2006)

    Article  ADS  Google Scholar 

  2. Alekseeva, G., Arkharov, A., Galkin, V., Hagen-Thorn, E., Nikanorova, L., Novikov, V., Novopashenny, V., Pakhomov, V., Ruban, E., Shechegolev, D.: The pulkovo spectrophotometric catalog of bright stars in the range from 320 to 1080 nm-a supplement. Balt. Astron. 6, 481 (1997)

    ADS  Google Scholar 

  3. Bailer-Jones, C.A., Irwin, M., Von Hippel, T.: Automated classification of stellar spectra–ii. two-dimensional classification with neural networks and principal components analysis. Mon. Not. R. Astron. Soc. 298(2), 361–377 (1998)

    Article  ADS  Google Scholar 

  4. Beckouche, S., Starck, J.-L., Fadili, J.: Astronomical image denoising using dictionary learning. preprint arXiv:1304.3573 (2013)

  5. Bratsolis, E.: Astrophysical information from objective prism digitized images: classification with an artificial neural network. EURASIP J. Appl. Si. Pr. 2005, 2536–2545 (2005)

    Article  MATH  Google Scholar 

  6. Bratsolis, E., Bellas-Velidis, I., Dapergolas, A., Kontizas, E., Kontizas, M.: Automatic extraction and classification of low-dispersion objective prism stellar spectra. Astron. Astrophys. Suppl. Ser. 142(2), 339–345 (2000)

    Article  ADS  Google Scholar 

  7. Burgasser, A.J., Kirkpatrick, J.D., Brown, M.E., Reid, I.N., Burrows, A., Liebert, J., Matthews, K., Gizis, J.E., Dahn, C.C., Monet, D.G., et al.: The spectra of t dwarfs. i. near-infrared data and spectral classification. Astrophys. J. 564(1), 421 (2002)

    Article  ADS  Google Scholar 

  8. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  9. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Demanet, L., Ying, L.: Wave atoms and sparsity of oscillatory patterns. Appl. Comput. Harmon. Anal. 23(3), 368–387 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duan, F.Q., Liu, R., Guo, P., Zhou, M.Q., Wu, F.C.: Automated spectral classification using template matching. Res. Astron. Astrophys. 9(3), 341 (2009)

    Article  ADS  Google Scholar 

  12. Elad, M.: Sparse and redundant representations: From theory to applications in signal and image processing. Springer (2010)

  13. Giridhar, S., Muneer, S., Goswami, A.: Automated classification and stellar parameterization (2006)

  14. Gulati, R., Gupta, R., Gothoskar, P., Khobragade, S.: Stellar spectral classification using automated schemes. Astrophys. J. 426, 340–344 (1994)

    Article  ADS  Google Scholar 

  15. Huang, K., Aviyente, S.: Sparse representation for signal classification. In: NIPS, pp 609–616 (2006)

  16. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative learned dictionaries for local image analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)

  17. Mallat, S.: A wavelet tour of signal processing: The sparse way. Academic press (2008)

  18. Murtagh, F., Starck, J.: Astronomical image and data analysis. Springer (2006)

  19. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: 1993 Conference Record of The 77th Asilomar Conference on Signals, Systems and Computers, 1993. pp. 40–44. IEEE (1993)

  20. Pickles, A.: A stellar spectral flux library: 1150–25000 å. Publ. Astron. Soc. Pac. 110(749), 863–878 (1998)

    Article  ADS  Google Scholar 

  21. Reid, I.N., Burgasser, A., Cruz, K., Kirkpatrick, J.D., Gizis, J.: Near-infrared spectral classification of late m and l dwarfs. Astron. J. 121(3), 1710 (2001)

    Article  ADS  Google Scholar 

  22. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the k-svd algorithm using batch orthogonal matching pursuit. CS Technion, pp. 40 (2008)

  23. Singh, H.P., Gulati, R.K., Gupta, R.: Stellar spectral classification using principal component analysis and artificial neural networks. Mon. Not. R. Astron. Soc. 295(2), 312–318 (1998)

    Article  ADS  Google Scholar 

  24. Starck, J.-L., Murtagh, F., Fadili, J.M.: Sparse image and signal processing: Wavelets, curvelets, morphological diversity. Cambridge University Press (2010)

  25. Valiollahzadeh, S., Firouzi, H., Babaie-Zadeh, M., Jutten, C.: Image denoising using sparse representations. In: Independent Component Analysis and Signal Separation, pp 557–564. Springer (2009)

  26. Vieira, E., Ponz, J.: Automated classification of iue low-dispersion spectra. i. normal stars. Astron. Astrophys. Suppl. Ser. 111, 393–398 (1995)

    ADS  Google Scholar 

  27. Von Hippel, T., Storrie-Lombardi, L., Storrie-Lombardi, M., Irwin, M.: Automated classification of stellar spectra-part one-initial results with artificial neural networks. Mon. Not. R. Astron. Soc. 269, 97 (1994)

    Article  ADS  Google Scholar 

  28. Winter, C., Jeffery, C., Drilling, J.: Automatic classification of subdwarf spectra using a neural network. Astrophys. Space Sci. 291(3–4), 375–378 (2004)

    Article  ADS  Google Scholar 

  29. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. P. IEEE 98(6), 1031–1044 (2010)

    Article  Google Scholar 

  30. Yang, A.Y., Wright, J., Ma, Y., Sastry, S.S.: Feature selection in face recognition: A sparse representation perspective. IEEE Transactions Pattern Analysis and Machine Intelligence, UC Berkeley Tech Report UCB/EECS-2007-99 (2007)

  31. Zhao, M., Li, S., Kwok, J.: Text detection in images using sparse representation with discriminative dictionaries. Image Vis. Comput. 28(12), 1590–1599 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The author H. Peregrina-Barreto wants to thank to the Consejo Nacional de Ciencia y Tecnología (CONACyT, México) for the support through the postdoctoral residency to develop this work. The authors thank CONACyT for the financial support through project CB-2011-01-169755. We thank Saula Tecpanecatl Mani (Plates Laboratory, INAOE, México) for her hard work and invaluable experience, and to Carlos Torres (IPN, México) for his help in data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Peregrina-Barreto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Hernández, R., Peregrina-Barreto, H., Altamirano-Robles, L. et al. Automatic stellar spectral classification via sparse representations and dictionary learning. Exp Astron 38, 193–211 (2014). https://doi.org/10.1007/s10686-014-9413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-014-9413-2

Keywords

Navigation