Skip to main content
Log in

Achieving sub electron noise in CCD systems by means of digital filtering techniques that lower 1/f pixel correlated noise

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Scientific CCDs designed in thick high resistivity silicon (Si) are excellent detectors for astronomy, high energy and nuclear physics, and instrumentation. Many applications can benefit from CCDs ultra low noise readout systems. The present work shows how sub electron noise CCD images can be achieved using digital signal processing techniques. These techniques allow 0.4 electrons of noise at readout bandwidths of up to 10 Kpixels per second while keeping the full CCD spatial resolution and signal dynamic range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abdalla, F., et al.: The dark energy spectrometer (DESpec): a multi-fiber spectroscopic upgrade of the dark energy survey and camera for the Blanco Telescope. In preparation.

  2. Amelio, G.F., Tompsett, M.F., Smith, G.E.: Experimental verification of the charge coupled device concept. Bell Syst. Tech. J. 49(4), 593–600 (1970)

    Google Scholar 

  3. Analog Devices: 2.5 MSPS, 24-Bit, 100 dB Sigma-Delta ADC with On-Chip Buffer, Analog Devices. http://www.analog.com/static/imported-files/data_sheets/AD7760.pdf (2006)

  4. Schlegel, D., et al.: BigBOSS: the ground-based stage IV dark energy experiment. http://arxiv.org/abs/0904.0468 (2009)

  5. Boyle, W.S.: Nobel lecture: CCD—an extension of man’s view. Rev. Mod. Phys. 82(3), 2305–2306 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  6. Chandler, C.E., Bredthauer, R.A., Janesick, J.R., Westphal, J.A., Gunn, J.E.: Sub-electron noise charge coupled devices. SPIE Charg.-Coupled Devices Solid State Opt. Sens. 1242, 238–251 (1990)

    ADS  Google Scholar 

  7. Diehl, H.T., et al.: Characterization of DECam focal plane detectors. In: Dorn, D.A., Holland, D. (eds.) High Energy, Optical and Infrared Detectors for Astronomy III, Proceedings of the SPIE, vol. 7021, p. 70217 (2008)

  8. DALSA-Teledyne: http://www.dalsa.com/

  9. Estrada, J., et al.: CCD testing and characterization for Dark Energy Survey. In: McLean, I.S., Iye, M. (eds.) Ground-Based and Airborne Instrumentation for Astronomy, Proceedings of the SPIE, vol. 6269, p. 62693K (2006)

  10. Estrada, J., et al.: Prospects for a direct dark matter search using high resistivity CCD detectors. arXiv:0802.2872v3 [hep-ex](1Jul2008) (2008)

  11. Flaugher, B.: The Dark Energy Survey instrument design. In: McLean, I.S., Iye, M. (eds.) Ground-Based and Airborne Instrumentation for Astronomy, Proceedings of the SPIE, vol. 6269 (2006)

  12. Holland, S.E., Groom, D.E., Palaio, N.P., Stover, R.J., Wei, M.: Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon. IEEE Trans. Electron Devices 50(1), 225–238 (2003)

    Article  ADS  Google Scholar 

  13. Honscheid, K., DePoy, D.L.: The Dark Energy Camera (DECam). A new instrument for the Dark Energy Survey. IEEE Nuclear Science Symposium Conference Record NSS ’08, pp. 3357–3360 (2008)

  14. Janesick, J.R.: Scientific Charge Coupled Devices. SPIE Publications, Bellingham, Washington (2001)

  15. Janesick, J.R., et al.: New advancements in charge-coupled device technology: sub-electron noise and 4096×4096 pixel CCDs. SPIE Charg.-Coupled Devices Solid State Opt. Sens. 1242, 223–237 (1990)

    ADS  Google Scholar 

  16. McLean, I.: Electronic Imaging in Astronomy—Detectors and Instrumentation, 2nd edn. Springer-Praxis, Berlin (2008)

    Google Scholar 

  17. Smith, G.E.: Nobel lecture: the invention and early history of the CCD. Rev. Mod. Phys. 82(3), 2307–2312 (2010)

    Article  ADS  Google Scholar 

  18. Wey, H.M., Guggenbuhl, W.: An improved correlated double sampling circuit for low noise charge coupled devices. IEEE Trans. Circuits Syst. 37(12), 1559–1565 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the Fermilab staff at SiDet facility, in particular Kevin Kuk, Donna Kubik, Walter Stuermer who helped us with the operations of CCDs systems; and Stephen Holland from Lawrence Berkeley National Laboratory for always being available to answer our CCD questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Indalecio Cancelo.

Additional information

FERMILAB-PUB-11-391, Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cancelo, G.I., Estrada, J.C., Moroni, G.F. et al. Achieving sub electron noise in CCD systems by means of digital filtering techniques that lower 1/f pixel correlated noise. Exp Astron 34, 13–29 (2012). https://doi.org/10.1007/s10686-012-9294-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-012-9294-1

Keywords

Navigation