Skip to main content
Log in

High density brood of Australian gall-inducing Acacia thrips aid in fungal control

  • Evolutionary Ecology Natural History
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Kladothrips (Froggatt) is a genus of gall-inducing thrips that develop broods, and in some species, long-lived colonies within galls they form on phyllodes of Acacia in arid and semi-arid Australia. The gall interior is a stable environment for thrips in an otherwise inhospitable environment, but these conditions may also be favorable for fungal parasites. This fungal threat is corroborated by the observation that Kladothrips produce highly effective antifungal compounds. Here we investigated antifungal production in three Acacia thrips species, two gall-inducers: Kladothrips arotrum and Kladothrips tepperi, and one kleptoparasitic thrips, Koptothrips dyskritus. Using a spectrophotometer, the germination of a suspension of Cordyceps bassiana spores (an entomopathogenic fungus) can be detected by observing an abrupt increase in light absorption by the suspension. The addition of thrips exterior washes to these fungal spore suspensions resulted in significant delays in fungal germination for all three species. Foundresses in both Kladothrips species strongly delay fungal germination before their brood has matured. Young and maturing colonies with less than 50 adult individuals (the remainder of the brood are in juvenile stages of development) produced some antifungal effects but within the range produced by the foundress alone. Mature colonies (>100 adults) delayed germination for the duration of our observational window (48 h), suggesting a possible group size threshold for antifungal effectiveness. Koptothrips dyskritus antifungals were observed to be the strongest of the three species when <50 individuals were present. The strong antifungal abilities of the invading Ko. dyskritus would allow this species to invade older or damaged galls, which has been observed in the field. This pattern of antifungal activity in Acacia thrips suggests that effective defense against fungal pathogens is strongly associated with group size and colony maturity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alteen H (2012) Antimicrobial producing streptomyces-like strains cultured from within social thrips colonies. Memorial University of Newfoundland and Labrador

  • Arnqvist G, Martensson T (1998) Measurement error in geometric morphometrics: empirical strategies to assess and reduce its impact on measures of shape. Acta Zool Acad Sci H 44(1–2):73–96

    Google Scholar 

  • Baracchi D, Francese S, Turillazzi S (2011) Beyond the antipredatory defence: honey bee venom function as a component of social immunity. Toxicon 58(6–7):550–557

    Article  CAS  PubMed  Google Scholar 

  • Beattie AJ, Turnbull CL, Hough T, Knox RB (1986) Antibiotic production: a possible function for the metapleural glands of ants (hymenoptera: Formicidae). Ann Entomol Soc Am 79(3):448–450

    Article  Google Scholar 

  • Blum MS (1991) Chemical ecology of the thysanoptera. Towards understanding Thysanoptera. USDA Forest Service General Technical Report NE-147:95-112

  • Blum MS, Foottit R, Fales HM (1992) Defensive chemistry and function of the anal exudate of the thrips Haplothrips leucanthemi. Comp Biochem Phys 102(1):209–211

    Google Scholar 

  • Boos S, Meunier J, Pichon S, Kölliker M (2014) Maternal care provides antifungal protection to eggs in the European Earwig. Behav Ecol 25(4):754–761

    Article  Google Scholar 

  • Chapman TW, Crespi BJ, Kranz BD, Schwarz MP (2000) High relatedness and inbreeding at the origin of eusociality in gall-inducing thrips. Proc Natl Acad Sci USA 15 97(4):1648–1650

    Article  CAS  Google Scholar 

  • Chapman TW, Kranz BD, Bejah K, Morris DC, Schwarz MP, Crespi BJ (2002) The evolution of soldier reproduction in social thrips. Behav Ecol 13(4):519–525

    Article  Google Scholar 

  • Chapman TW, Francis-Geyer KL, Schwarz MP (2006) The impact of kleptoparasitic invasions on the evolution of gall-size in social and solitary Australian Acacia thrips. Insect Sci 13(5):391–400

    Article  Google Scholar 

  • Chapman TW, Crespi BJ, Perry SP (2008) The evolutionary ecology of eusociality in Australian gall thrips: a ‘model clades’ approach. In: Korb J, Heinze J (eds) Ecology of social evolution. Springer, Berlin, pp 57–83

    Chapter  Google Scholar 

  • Cremer S, Armitage SA, Schmid-Hempel P (2007) Social immunity. Curr Biol 7(16):R693–R702

    Article  Google Scholar 

  • Crespi BJ (1996) Comparative analysis of the origins and losses of eusociality: causal mosaics and historical uniqueness. In: Martins EP (ed) Phylogenies and the comparative method in animal behavior. Oxford University Press, Oxford, pp 253–287

    Google Scholar 

  • Crespi BJ, Abbot P (1999) The behavioral ecology and evolution of kleptoparasitism in australian gall thrips. Fla Entomol 82(2):147–164

    Article  Google Scholar 

  • Crespi BJ, Carmean A, David A, Chapman TW (1997) Ecology and evolution of galling thrips and their allies. Annu Rev Entomol 42(1):51–71

    Article  CAS  PubMed  Google Scholar 

  • Crespi BJ, Morris DC, Mound LA (2004) Evolution of ecological and behavioural diversity: Australian acacia thrips as model organisms, 1st edn. Australian Biological Resources Study and Australian National Insect Collection, CSIRO, Canberra, Australia

    Google Scholar 

  • De Facci M, Wang H, Yuvaraj JK, Dublon IAN, Svensson GP, Chapman TW, Anderbrant O (2014) Chemical composition of anal droplets of the eusocial gall-inducing thrips Kladothrips intermedius. Chemoecology 24(3):85–94

    Article  Google Scholar 

  • Evans JD, Spivak M (2010) Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol 103:S62–S72

    Article  PubMed  Google Scholar 

  • Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42(1):611–643

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves G (2010) Host exploitation and fidelity in acacia gall-invading parasites, Memorial University of Newfoundland and Labrador

  • Hamilton C, Lay F, Bulmer MS (2011) Subterranean termite prophylactic secretions and external antifungal defenses. J Insect Physiol 57(9):1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Hoggard SJ, Wilson PD, Beattie AJ, Stow AJ (2011) Social complexity and nesting habits are factors in the evolution of antimicrobial defences in wasps. PLoS ONE 6(7):e21763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard DF, Blum MS, Fales HM (1983) Defense in thrips: forbidding fruitiness of a lactone. Science 220(4594):335–336

    Article  CAS  PubMed  Google Scholar 

  • Kaltenpoth M, Göttler W, Herzner G, Strohm E (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15(5):475–479

    Article  CAS  PubMed  Google Scholar 

  • Karatzoglou A, Feinerer I (2010) Kernel-based machine learning for fast text mining in R. Comput Stat Data Anal 54(2):290–297

    Article  Google Scholar 

  • Kranz BD, Schwarz MP, Wills TE, Chapman TW, Morris DC, Crespi BJ (2001) A fully reproductive fighting morph in a soldier clade of gall-inducing thrips (Oncothrips morrisi). Behav Ecol Sociobiol 50(2):151–161

    Article  Google Scholar 

  • Matsuura K, Matsunaga T (2015) Antifungal activity of a termite queen pheromone against egg-mimicking termite ball fungi. Ecol Res 30:93–100

    Article  CAS  Google Scholar 

  • McLeish MJ, Chapman TW (2007) The origin of soldiers in the gall-inducing thrips of Australia (Thysanoptera: phlaeothripidae). Aust J Entomol 46(4):300–304

    Article  Google Scholar 

  • McLeish MJ, Chapman TW, Crespi BJ (2006) Inbreeding ancestors: the role of sibmating in the social evolution of gall thrips. J Hered 97(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Mcleish MJ, Chapman TW, Schwarz MP (2007) Host-driven diversification of gall-inducing acacia thrips and the aridification of Australia. BMC Biol 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris DC, Mound LA, Schwarz MP, Crespi BJ (1999) Morphological phylogenetics of Australian gall-inducing thrips and their allies: the evolution of host-plant affiliations, domicile use and social behaviour. Syst Entomol 24(3):289–299

    Article  Google Scholar 

  • Morris DC, Schwarz MP, Cooper SJB, Mound LA (2002) Phylogenetics of Australian acacia thrips: the evolution of behaviour and ecology. Mol Phylogenet Evol 25(2):278–292

    Article  CAS  PubMed  Google Scholar 

  • Mound LA (1971) Gall-forming thrips and allied species (Thysanoptera: phlaeothripinae) from Acacia trees in Australia. Bull Br Mus Nat 25:389–464

    Google Scholar 

  • Mound LA, Heming BS, Palmer JM (1980) Phylogenetic relationships between the families of recent Thysanoptera Insecta. Zool J Linn Soc 69(2):111–141

    Article  Google Scholar 

  • Mound LA, Crespi B, Kranz B (1996) Gall-inducing Thysanoptera (Phlaeothripidae) on acacia phyllodes in Australia: host-plant relations and keys to genera and species. Invertebr Syst 10(6):1171–1198

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Method Ecol Evol 4(2):133–142

    Article  Google Scholar 

  • Nel P, Schmidt AR, Bässler C, Nel A (2013) Fossil thrips of the family Uzelothripidae suggest 53 million years of morphological and ecological stability. Acta Palaeontol Pol 58(3):609–614

    Google Scholar 

  • Obin MS, Vander Meer RK (1985) Gaster flagging by fire ants (solenopsis spp.): functional significance of venom dispersal behavior. J Chem Ecol 11(12):1757–1768

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. [computer program]. R Foundation for Statistical Computing, Vienna, Austria

  • Reber A, Purcell J, Buechel SD, Buri P, Chapuisat M (2011) Expression and impact of antifungal grooming in ants. J Evol Biol 24(5):954–964

    Article  CAS  PubMed  Google Scholar 

  • Rosengaus RB, Savoie K (2002) The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc Natl Acad Sci USA 99(10):6838–6842

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosengaus RB, Maxmen AB, Coates LE, Traniello JF (1998) Disease resistance: a benefit of sociality in the dampwood termite zootermopsis angusticollis (isoptera: Termopsidae). Behav Ecol Sociobiol 44(2):125–134

    Article  Google Scholar 

  • Rosengaus RB, Carlock DM, Traniello JFA, Lefebvre ML (2000) The social transmission of disease between adult male and female reproductives of the dampwood termite Zootermopsis angusticollis. Ethol Ecol Evol 12(4):419–433

    Article  Google Scholar 

  • Rosengaus RB, Traniello JFA, Lefebvre ML, Maxmen AB (2004) Fungistatic activity of the sternal gland secretion of the dampwood termite Zootermopsis angusticollis. Insectes Soc 51(3):259–264

    Article  Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

    Google Scholar 

  • Shaw PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    Article  Google Scholar 

  • Smith SM, Beattie AJ, Gillings MR, Holley MP, Stow AJ, Turnbull CL, Wilson PD, Briscoe DA (2008) An enhanced miniaturized assay for antimicrobial prospecting. J Microbiol Methods 72(1):103–106

    Article  CAS  PubMed  Google Scholar 

  • Stow A, Beattie A (2008) Chemical and genetic defenses against disease in insect societies. Brain Behav Immun 22(7):1009–1013

    Article  CAS  PubMed  Google Scholar 

  • Stow A, Briscoe D, Gillings M, Holley M, Smith S, Leys R, Silberbauer T, Turnbull C, Beattie A (2007) Antimicrobial defences increase with sociality in bees. Biol Lett 3(4):422–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Stow A, Turnbull C, Gillings M, Smith S, Holley M, Silberbauer L, Wilson PD, Briscoe D, Beattie A (2010) Differential antimicrobial activity in response to the entomopathogenic fungus Cordyceps in six Australian bee species. Aust J Entomol 49(2):145–149

    Article  Google Scholar 

  • Suzuki T, Haga K, Kodama S, Watanabe K, Kuwahara Y (1988) Secretion of thrips. II. Secretions of three gall-inhabiting thrips (Thysanoptera: Phlaeothripidae). Appl Entomol Zool 23(3):291–297

    CAS  Google Scholar 

  • Suzuki T, Haga K, Tsutsumi T, Matsuyama S (2004) Analysis of anal secretions from Phlaeothripine thrips. J Chem Ecol 30(2):409–423

    Article  CAS  PubMed  Google Scholar 

  • Tallamy DW (1984) Insect parental care. Bioscience 34(1):20–24

    Article  Google Scholar 

  • Teerling C, Pierce H Jr, Borden J, Gillespie D (1993) Identification and bioactivity of alarm pheromone in the western flower thrips Frankliniella occidentalis. J Chem Ecol 19(4):681–697

    Article  CAS  PubMed  Google Scholar 

  • Tragust S, Mitteregger B, Barone V, Konrad M, Ugelvig LV, Cremer S (2013) Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr Biol 23(1):76–82

    Article  CAS  PubMed  Google Scholar 

  • Tranter C, Graystock P, Shaw C, Lopes J, Hughes W (2014) Sanitizing the fortress: protection of ant brood and nest material by worker antibiotics. Behav Ecol Sociobiol 68(3):499–507

    Article  Google Scholar 

  • Turnbull C, Hoggard S, Gillings M, Palmer C, Stow A, Beattie D, Briscoe D, Smith S, Wilson P, Beattie A (2011) Antimicrobial strength increases with group size: implications for social evolution. Biol Lett 7(2):249–252

    Article  PubMed  Google Scholar 

  • Turnbull C, Caravan H, Chapman T, Nipperess D, Dennison S, Schwarz M, Beattie A (2012a) Antifungal activity in thrips soldiers suggests a dual role for this caste. Biol Lett 8(4):526–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnbull C, Wilson PD, Hoggard S, Gillings M, Palmer C, Smith S, Beattie D, Hussey S, Stow A, Beattie A (2012b) Primordial enemies: fungal pathogens in thrips societies. PLoS ONE 7(11):e49737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzel H (1905) Phoeothrips Tepperi nov.sp., ein Bewohner von Gallen auf Acacia aneura in Australia. Cas ces Spol Entomol 2:100–102

    Google Scholar 

  • Vander Meer RK, Morel L (1995) Ant Queens deposit pheromones and antimicrobial agents on eggs. Naturwissenschaften 82:93–95

    Article  CAS  Google Scholar 

  • Veal DA, Trimble JE, Beattie AJ (1992) Antimicrobial properties of secretions from the metapleural glands of Myrmecia gulosa (the Australian bull ant). J Appl Bacteriol 72(3):188–194

    Article  CAS  PubMed  Google Scholar 

  • Walker TN, Hughes WO (2009) Adaptive social immunity in leaf-cutting ants. Biol Lett 5(4):446–448

    Article  PubMed  PubMed Central  Google Scholar 

  • Wills T, Chapman T, Kranz B, Schwarz M (2001) Reproductive division of labour coevolves with gall size in Australian thrips with soldiers. Naturwissenschaften 88(12):526–529

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a Discovery Grant from the National Science and Engineering Research Council (NSERC) awarded to TWC, an Australian Research Council (ARC) Grant to AS and AB, a NSERC CGS-M, and Australian Endeavours Award awarded to PJC, and funding from Macquarie University’s IMQRES (cotutelle) and Memorial University SGS fellowship. We would like to thank Barbra Langille, Holly Caravan, and Laurence Mound for advice and aiding with field collections. Finally, we are grateful to Shannon Smith, Stephen Hoggard, Miranda Christopher, Paul Duckett, Liette Vandine, Sarah Collison, Jessica Thompson, and Siobhan Dennison for advice on lab and field techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peterson J. Coates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coates, P.J., Stow, A., Turnbull, C. et al. High density brood of Australian gall-inducing Acacia thrips aid in fungal control. Evol Ecol 31, 119–130 (2017). https://doi.org/10.1007/s10682-016-9874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9874-z

Keywords

Navigation