Skip to main content
Log in

Functional modularity in a forcible flower mechanism: relationships among morphology, biomechanical features and fitness

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Flowers may be interpreted as complex combinations of organs functionally coordinated to attract pollinators and to mechanically interact with the pollinator’s body, particularly when flower mechanisms are actively handled by pollinators. Thus, a functional modularity of traits in keel flowers (Fabaceae) was expected because of a compartmentalization between attraction and mechanical functions. To test this hypothesis, we used Collaea argentina, a Fabaceae that exhibits typical keel flowers. The force needed to open keels, the keel displacement angle and floral morphometric traits in 100 plants from a natural population were measured to detect floral characters correlated with the biomechanical variables. Furthermore, we examined the relationships among this functional module, biomechanical variables and female reproductive success to explore whether these traits are the targets of pollinator–mediated phenotypic selection, and used path analysis to examine the causal relationship among these variables. A functional module formed by two morphometric traits of the petals directly involved in the floral mechanism (keel and wings) was found, but no flag trait was involved in this module. Even though the functional module had a positive effect on force and there were significant relationships between the displacement angle and fruit set, no significant effect of force on female reproductive success was detected. These results question whether selection currently plays a role favouring the integration of this module, but this may be consistent with a past stabilizing selection on the force needed to open the keel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armbruster WS, Pélabon C, Bolstad GH, Hansen TF (2014) Integrated phenotypes: understanding trait covariation in plants and animals. Philos Trans R Soc B 369:20130245

    Article  Google Scholar 

  • Ashman TL, Majetic CJ (2006) Genetic constraints on floral evolution: a review and evaluation of patterns. Heredity 96:343–352

    Article  PubMed  Google Scholar 

  • Benitez-Vieyra S, Medina M, Glinos E, Cocucci AA (2006) Pollination mechanism and pollinator mediated selection in Cyclopogon elatus (Orchidaceae). Funct Ecol 20(6):948–957

    Article  Google Scholar 

  • Berg RL (1960) The ecological significance of correlation pleiades. Evolution 14:171–180

    Article  Google Scholar 

  • Bissell EK, Diggle PK (2010) Modular genetic architecture of floral morphology in Nicotiana: quantitative genetic and comparative phenotypic approaches to floral integration. J Evol Biol 23:1744–1758

    Article  CAS  PubMed  Google Scholar 

  • Brantjes NBM (1981a) Floral mechanics in Phlomis (Lamiaceae). Ann Bot Lond 47:279–282

    Google Scholar 

  • Brantjes NBM (1981b) Mechanical aspects of the corolla, a quantitative and functional approach. Acta Bot Neerl 30(4):317

    Google Scholar 

  • Brantjes NBM, De Vos OC (1981) The explosive release of pollen in flowers of Hyptis (Lamiaceae). New Phytol 87:425–430

    Article  Google Scholar 

  • Brodie ED, Janzen FJ (1996) On the assignment of fitness values in statistical analyses of selection. Evolution 50(1):437–442

    Article  Google Scholar 

  • Brodie ED, Moore AJ, Janzen FJ (1995) Visualizing and quantifying natural selection. Trends Ecol Evol 10:313–318

    Article  PubMed  Google Scholar 

  • Campbell DR (2009) Using phenotypic manipulations to study multivariate selection of floral trait associations. Ann Bot Lond 103:1557–1566. doi:10.1093/aob/mcp032

    Article  Google Scholar 

  • Cardel YJ, Koptur S (2010) Effects of florivory on the pollination of flowers: an experimental field study with a perennial plant. Int J Plant Sci 171(3):283–292

    Article  Google Scholar 

  • Cariveau D, Irwin RE, Brody AK, Sevillano García-Mayeya L, von der Ohe A (2004) Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos 104(1):15–26

    Article  Google Scholar 

  • Carvallo G, Medel R (2005) The modular structure of the floral phenotype in Mimulus luteus var. luteus (Phrymaceae). Rev Chil Hist Nat 78:665–672

    Article  Google Scholar 

  • Cheverud JM (1982) Phenotypic, genetic and environmental morphological integration in the cranium. Evolution 36:499–516

    Article  Google Scholar 

  • Claßen-Bockhoff R, Speck T, Tweraser E, Wester P, Thimm S, Reith M (2004) The staminal lever mechanism in Salvia L. (Lamiaceae): a key innovation for adaptive radiation? Org Divers Evol 4:189–205

    Article  Google Scholar 

  • Cocucci AA (1989) El mecanismo floral de Schizanthus (Solanaceae). Kurtziana 20:113–132

    Google Scholar 

  • Conner JK, Cooper IA, La Rosa R, Pérez SG, Royer AM (2014) Patterns of phenotypic correlations among morphological traits across plants and animals. Philos Trans R Soc B 369:20130246

    Article  Google Scholar 

  • Córdoba SA, Cocucci AA (2011) Flower power: its association with bee power and floral functional morphology in papilionate legumes. Ann Bot Lond 108:919–931

    Article  Google Scholar 

  • Cresswell JE (1998) Stabilizing selection and the structural variability of flowers within species. Ann Bot Lond 81:463–473

    Article  Google Scholar 

  • Cuartas-Domínguez M, Medel R (2010) pollinator–mediated selection and experimental manipulation of the flower phenotype in Chloraea bletioides. Funct Ecol 24:1219–1227

    Article  Google Scholar 

  • Diggle PK (2014) Modularity and intra-floral integration in metameric organisms: plants are more than the sum of their parts. Philos Trans R Soc B 369:20130253

    Article  Google Scholar 

  • Faegri K, van der Pijl L (1966) The principles of pollination ecology. Pergamon Press, Canada

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol S 35:375–403

    Article  Google Scholar 

  • Fornoni J, Boege K, Domínguez CA, Ordano M (2008) How little is too little? The adaptive value of floral integration. Commun Integr Biol 1(1):1–3

    Article  Google Scholar 

  • Gómez JM (2000) Measurements of phenotypic selection and response to selection in Lobularia maritima: importance of direct and indirect components of natural selection. J Evol Biol 13:689–699

    Article  Google Scholar 

  • Gómez JM (2003) Herbivory reduces the strength of pollinator–mediated selection in the Mediterranean herb Erysimum mediohispanicum: consequences for plant specialization. Amer Naturalist 162(2):242–256

    Article  Google Scholar 

  • Gómez JM, Perfectti F, Camacho JPM (2006) Natural selection on Erysimum mediohispanicum flower shape: insights into the evolution of zygomorphy. Am Nat 168:531–545

    Article  PubMed  Google Scholar 

  • Gómez JM, Perfectti F, Klingenberg CP (2014) The role of pollinator diversity in the evolution of corolla-shape integration in a pollination-generalist plant clade. Philos Trans R Soc B 369:20130257

    Article  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multiresponse generalized linear mixed models: the MCMCglmm R Package. J Stat Softw 22:1–22

    Google Scholar 

  • Herrera C, Cerda X, García B, Guitián J, Medrano M, Rey P, Sánchez-Lafuente A (2002) Floral integration, phenotipic covariance structure and pollinator variation in bumblebee-pollinated Helleborus foetidus. J Evol Biol 15:108–121

    Article  Google Scholar 

  • Kingsolver JG, Schemske D (1991) Path analyses of natural selection. Trends Ecol Evol 6:276–280

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg CP (2008) Morphological integration and developmental modularity. Annu Rev Ecol Evol S 39:115–132

    Article  Google Scholar 

  • Lagoutte S, Lucero LM, Packmann I, Tourn GM, Roitman GG (2001) Estudio de la factibilidad de cultivo de Fabaceas de la Argentina. Dissertation, XX Reunión Argentina de Ecología. Bariloche, Argentina

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  Google Scholar 

  • Mitchell RJ (1993) Path Analysis: Pollination. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman & Hall, New York, pp 211–231

    Google Scholar 

  • Muchhala N, Thomson JD (2009) Going to great lengths: selection for long corolla tubes in an extremely specialized bat–flower mutualism. Proc R Soc B Biol Sci 276:2147–2152

    Article  Google Scholar 

  • Murren CJ, Pendleton N, Pigliucci M (2002) Evolution of phenotypic integration in Brassica (Brassicaceae). Am J Bot 89(4):655–663

    Article  PubMed  Google Scholar 

  • Ordano M, Fornoni J, Boege K, Domínguez CA (2008) The adaptive value of phenotypic floral integration. New Phytol 179:1183–1192

    Article  PubMed  Google Scholar 

  • Pérez F, Arroyo MT, Medel RJ (2007) Phylogenetic analysis of floral integration in Schizanthus (Solanaceae): does pollination truly integrate corolla traits? J Evol Biol 20(5):1730–1738

    Article  PubMed  Google Scholar 

  • Pérez-Barrales R, Arroyo J, Scott Armbruster W (2007) Differences in pollinator faunas may generate geographic differences in floral morphology and integration in Narcissus papyraceus (Amaryllidaceae). Oikos 116(11):1904–1918

    Article  Google Scholar 

  • Pigliucci M (2003) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol Lett 6:265–272

    Article  Google Scholar 

  • Pigliucci M, Preston K (2004) The evolutionary biology of complex phenotypes. Oxford University Press, Oxford

    Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed April 2015

  • Rausher MD (2008) Evolutionary transitions in floral color. Int J Plant Sci 169(1):7–21

    Article  CAS  Google Scholar 

  • Reith M, Baumman G, Claßen-Bockhoff R, Speck T (2007) New insights into the functional morphology of the lever mechanism of Salvia pratensis (Lamiaceae). Ann Bot Lond 100:393–400

    Article  Google Scholar 

  • Rodríguez-Gironés MA, Santamaría L (2004) Why are so many bird flowers red? PLoS Biol 2(10):e350

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Gironés MA, Santamaría L (2005) Resource partitioning among flower visitors and evolution of nectar concealment in multi–species communities. Proc R Soc B 272(1559):187–192

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosas-Guerrero V, Quesada M, Armbruster WS, Perez-Barrales R et al (2010) Influence of pollination specialization and breeding system on floral integration and phenotypic variation in Ipomoea. Evolution 65(2):350–364

    Article  PubMed  Google Scholar 

  • Rosseel Y (2012) Lavaan: an R package for structural equation modeling. J Stat Softw 48(2):1–36. http://www.jstatsoft.org/v48/i02. Accessed June 2013

  • Sérsic AN (1991) Observaciones sobre el mecanismo floral de Calceolaria (Scrophulariaceae). Kurtziana 21(153):164

    Google Scholar 

  • Specht CD, Bartlett ME (2009) Flower evolution: the origin and subsequent diversification of the angiosperm flower. Annu Rev Ecol Evol S 40:217–243

    Article  Google Scholar 

  • Sprayberry JDH, Suver M (2011) Hawkmoths’ innate flower preferences: a potential selective force on floral biomechanics. Arthropod Plant Interact 5:263–268

    Article  Google Scholar 

  • Strauss SY (1997) Floral characters link herbivores, pollinators, and plant fitness. Ecology 78(6):1640–1645

    Article  Google Scholar 

  • Strauss SY, Whittall JB (2006) Non-pollinator agents of selection on floral traits. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 120–138

    Google Scholar 

  • Tucić B, Vuleta A, Manitašević-Jovanović S (2013) Exploring phenotypic floral integration in Iris pumila L.: a common-garden experiment. Arch Biol Sci 65(2):781–793

    Article  Google Scholar 

  • Wagner GP (1996) Homologues, natural kinds and the evolution of modularity. Am Zool 36:36–43

    Google Scholar 

  • Westerkamp C (1997) Keel blossoms: bee flowers with adaptations against bees. Morphologie, Geobotanik, Oekophysiologie, Flora

  • Westerkamp C, Claßen-Bockhoff R (2007) Bilabiate flowers: the ultimate response to bees? Ann Bot Lond 100(2):361–374

    Article  Google Scholar 

  • Westerkamp C, Weber A (1999) Keel flowers of the Polygalaceae and Fabaceae: a functional comparison. Bot J Linn Soc 129(3):207–221

    Article  Google Scholar 

  • Whitaker DL, Webster LA, Edwards J (2007) The biomechanic of Cornus canadensis stamens are ideal for catapulting pollen vertically. Funct Ecol 21:219–225

    Article  Google Scholar 

Download references

Acknowledgments

We thank to CONICET for whom A.A.C and S.B.V are Researchers and S.A.C is a Postdoctoral Fellowship holder. We are also grateful to Dr. Valeria Paiaro, Dr. Mario Vallejo-Marin and anonymous reviewers for their useful input in a preliminary version of this manuscript and Hugo H. Paulini for his assistance in the field. Finally, we thank Dr. Paul Hobson, native speaker, for revision of the manuscript. The study was supported by SECYT UNC (162/2012), CONICET (PIP 114-201001-00346) and MINCYT Córdoba (PID 2008–2011) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvina A. Córdoba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdoba, S.A., Benitez-Vieyra, S. & Cocucci, A.A. Functional modularity in a forcible flower mechanism: relationships among morphology, biomechanical features and fitness. Evol Ecol 29, 719–732 (2015). https://doi.org/10.1007/s10682-015-9783-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-015-9783-6

Keywords

Navigation