Skip to main content
Log in

Eavesdropping on visual secrets

  • Review Article
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Private communication may benefit signalers by reducing the costs imposed by potential eavesdroppers such as parasites, predators, prey, or rivals. It is likely that private communication channels are influenced by the evolution of signalers, intended receivers, and potential eavesdroppers, but most studies only examine how private communication benefits signalers. Here, we address this shortcoming by examining visual private communication from a potential eavesdropper’s perspective. Specifically, we ask if a signaler would face fitness consequences if a potential eavesdropper could detect its signal more clearly. By integrating studies on private communication with those on the evolution of vision, we suggest that published studies find few taxon-based constraints that could keep potential eavesdroppers from detecting most hypothesized forms of visual private communication. However, we find that private signals may persist over evolutionary time if the benefits of detecting a particular signal do not outweigh the functional costs a potential eavesdropper would suffer from evolving the ability to detect it. We also suggest that all undetectable signals are not necessarily private signals: potential eavesdroppers may not benefit from detecting a signal if it co-occurs with signals in other more detectable sensory modalities. In future work, we suggest that researchers consider how the evolution of potential eavesdroppers’ sensory systems influences private communication. Specifically, we suggest that examining the fitness correlates and evolution of potential eavesdroppers can help (1) determine the likelihood that private communication channels are stable over evolutionary time, and (2) demonstrate that undetectable signals are private signals by showing that signalers benefit from a reduction in detection by potential eavesdroppers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler K, Taylor DH (1973) Extraocular perception of polarized-light by orienting salamanders. J Comp Physiol 87:203–212

    Google Scholar 

  • Aho AC, Donner K, Hyden C, Larsen LO, Reuter T (1988) Low retinal noise in animals with low body-temperature allows high visual sensitivity. Nature 334:348–350

    PubMed  CAS  Google Scholar 

  • Aho AC, Donner K, Reuter T (1993) Retinal origins of the temperature effect on absolute visual sensitivity in frogs. J Physiol Lond 463:501–521

    PubMed  CAS  Google Scholar 

  • Ala-Laurila P, Donner K, Koskelainen A (2004a) Thermal activation and photoactivation of visual pigments. Biophys J 86:3653–3662

    PubMed  CAS  Google Scholar 

  • Ala-Laurila P, Pahlberg J, Koskelainen A, Donner K (2004b) On the relation between the photoactivation energy and the absorbance spectrum of visual pigments. Vision Res 44:2153–2158

    PubMed  Google Scholar 

  • Ammermuller J, Itzhaki A, Weiler R, Perlman I (1998) UV-sensitive input to horizontal cells in the turtle retina. Eur J Neurosci 10:1544–1552

    PubMed  CAS  Google Scholar 

  • Arikawa K, Mizuno S, Scholten DGW, Kinoshita M, Seki T, Kitamoto J et al (1999) An ultraviolet absorbing pigment causes a narrow-band violet receptor and a single-peaked green receptor in the eye of the butterfly Papilio. Vision Res 39:1–8

    PubMed  CAS  Google Scholar 

  • Ashmore JF, Falk G (1980) Single-photon signal in rod bipolar cells of the dogfish retina. J Physiol Lond 300:151–166

    PubMed  CAS  Google Scholar 

  • Auburn JS, Taylor DH (1979) Polarized-light perception and orientation in larval bullfrogs Rana-Catesbeiana. Anim Behav 27:658–668

    Google Scholar 

  • Barlow HB (1956) Retinal noise and absolute threshold. J Opt Soc Am 46:634–639

    PubMed  CAS  Google Scholar 

  • Bass M, Optical Society of America (1995) In: Handbook of optics, 2nd edn. McGraw-Hill, New York

  • Bernard GD, Wehner R (1977) Functional similarities between polarization vision and color-vision. Vision Res 17:1019–1028

    PubMed  CAS  Google Scholar 

  • Blest AD, Hardie RC, Mcintyre P, Williams DS (1981) The spectral sensitivities of identified receptors and the function of retinal tiering in the principal eyes of a jumping spider. J Comp Physiol 145:227–239

    Google Scholar 

  • Bowmaker JK, Knowles A (1977) The visual pigments and oil droplets of the chicken retina. Vision Res 17:755–764

    PubMed  CAS  Google Scholar 

  • Brady P, Cummings M (2010) Natural history note differential response to circularly polarized light by the jewel scarab beetle chrysina gloriosa. Am Nat 175:614–620

    PubMed  Google Scholar 

  • Briscoe AD (2001) Functional diversification of lepidopteran opsins following gene duplication. Mol Biol Evol 18:2270–2279

    PubMed  CAS  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    PubMed  CAS  Google Scholar 

  • Bruce MJ, Herberstein ME, Elgar MA (2001) Signalling conflict between prey and predator attraction. J Evol Biol 14:786–794

    Google Scholar 

  • Bybee SM, Yuan FR, Ramstetter MD, Llorente-Bousquets J, Reed RD, Osorio D et al (2012) UV photoreceptors and UV-yellow wing pigments in heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication. Am Nat 179:38–51

    PubMed  Google Scholar 

  • Cade W (1975) Acoustically orienting parasitoids—fly phonotaxis to cricket song. Science 190:1312–1313

    Google Scholar 

  • Cameron DA, Pugh EN (1991) Double cones as a basis for a new type of polarization vision in vertebrates. Nature 353:161–164

    PubMed  CAS  Google Scholar 

  • Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM (2007) The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol 24:1843–1852

    PubMed  CAS  Google Scholar 

  • Chan T, Lee M, Sakmar TP (1992) Introduction of hydroxyl-bearing amino-acids causes bathochromic spectral shifts in rhodopsin—amino-acid substitutions responsible for red-green color pigment spectral tuning. J Biol Chem 267:9478–9480

    PubMed  CAS  Google Scholar 

  • Chen C, Song QS, Proffit M, Bessiere JM, Li ZB, Hossaert-McKey M (2009) Private channel: a single unusual compound assures specific pollinator attraction in Ficus semicordata. Funct Ecol 23:941–950

    Google Scholar 

  • Chiou TH, Mathger LM, Hanlon RT, Cronin TW (2007) Spectral and spatial properties of polarized light reflections from the arms of squid (Loligo pealeii) and cuttlefish (Sepia officinalis L.). J Exp Bio 210:3442–3452

    Google Scholar 

  • Chiou TH, Kleinlogel S, Cronin T, Caldwell R, Loeffler B, Siddiqi A et al (2008) Circular polarization vision in a stomatopod crustacean. Curr Biol 18:429–434

    PubMed  CAS  Google Scholar 

  • Clark DL, Roberts AJ, Uetz GW (2012) Eavesdropping and signal matching in visual courtship displays of spiders. Biol Lett 8:375–378

    Google Scholar 

  • Clarke GL (1936) On the depth at which fish can see. Ecology 17:452–456

    Google Scholar 

  • Collier RJ, Waldron WR, Zigman S (1989) Temporal sequence of changes to the gray squirrel retina after near-UV exposure. Invest Ophthalmol Vis Sci 30:631–637

    PubMed  CAS  Google Scholar 

  • Cronin TW, Shashar N, Caldwell RL, Marshall NJ, Cheroske AG, Chiou TH (2003) Polarization vision and its role in biological signaling. Integr Comp Biol 43:549–558

    PubMed  Google Scholar 

  • Cummings ME, Rosenthal GG, Ryan MJ (2003) A private ultraviolet channel in visual communication. Proc R Soc Lond Ser B-Biol Sci 270:897–904

    Google Scholar 

  • Cummings ME, Jordao JM, Cronin TW, Oliveira RF (2008) Visual ecology of the fiddler crab, Uca tangeri: effects of sex, viewer and background on conspicuousness. Anim Behav 75:175–188

    Google Scholar 

  • De Mora SJ, Demers S, Vernet M (2000) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge

    Google Scholar 

  • De Vries H (1943) The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye. Physica 10:553–564

    Google Scholar 

  • Denton EJ, Gilpinbr JB, Wright PG (1970) On filters in photophores of mesopelagic fish and on a fish emitting red light and especially sensitive to red light. J Physiol Lond 208:P72

    Google Scholar 

  • Deutschlander ME, Phillips JB (1995) Characterization of an ultraviolet photoreception mechanism in the retina of an amphibian, the axolotl (Ambystoma-Mexicanum). Neurosci Lett 197:93–96

    PubMed  CAS  Google Scholar 

  • Devoe RD (1975) Ultraviolet and green receptors in principal eyes of jumping spiders. J Gen Physiol 66:193–207

    CAS  Google Scholar 

  • Douglas RH, Marshall NJ (1999) A review of vertebrate and invertebrate optical filters. In Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Vallerga S (eds) Adaptive mechanisms in the ecology of vision. Kluwer Academic Publishers, Dordrecht

  • Douglas JM, Cronin TW, Chiou TH, Dominy NJ (2007) Light habitats and the role of polarized iridescence in the sensory ecology of neotropical nymphalid butterflies (Lepidoptera: Nymphalidae). J Exp Biol 210:788–799

    PubMed  Google Scholar 

  • Dulai KS, von Dornum M, Mollon JD, Hunt DM (1999) The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Res 9:629–638

    PubMed  CAS  Google Scholar 

  • Endler JA (1978) A predator’s view of animal color patterns. Evol Biol 11:319–363

    Google Scholar 

  • Endler JA (1980) Natural-selection on color patterns in poecilia-reticulata. Evolution 34:76–91

    Google Scholar 

  • Endler JA (1983) Natural and sexual selection on color patterns in poeciliid fishes. Environ Biol Fishes 9:173–190

    Google Scholar 

  • Endler JA (1991) Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vision Res 31:587–608

    PubMed  CAS  Google Scholar 

  • Endler JA (1993) The color of light in forests and its implications. Ecol Monogr 63:1–27

    Google Scholar 

  • Fineran BA, Nicol JA (1976) Novel cones in the retina of the anchovy (Anchoa). J Ultrastruct Res 54:296–303

    PubMed  CAS  Google Scholar 

  • Flamarique IN, Harosi FI (2002) Visual pigments and dichroism of anchovy cones: a model system for polarization detection. Vis Neurosci 19:467–473

    PubMed  Google Scholar 

  • Flamarique IN, Hawryshyn CW, Harosi FI (1998) Double-cone internal reflection as a basis for polarization detection in fish. J Opt Soc Am a-Opt Image Sci Vis 15:349–358

    Google Scholar 

  • Florey E (1969) Ultrastructure and function of cephalopod chromatophores. Am Zool 9:429

    Google Scholar 

  • Frank TM, Case JF (1988) Visual spectral sensitivities of bioluminescent deep-sea crustaceans. Biol Bull 175:261–273

    Google Scholar 

  • Frank TM, Johnsen S, Cronin T (2012) Light and vision in the deep-sea benthos: II. Vision in deep-sea crustaceans. J Exp Biol 215:3344–3353

    PubMed  Google Scholar 

  • Frentiu FD, Briscoe AD (2008) A butterfly eye’s view of birds. BioEssays 30:1151–1162

    PubMed  CAS  Google Scholar 

  • Frentiu FD, Bernard GD, Cuevas CI, Sison-Mangus MP, Prudic KL, Briscoe AD (2007) Adaptive evolution of color vision as seen through the eyes of butterflies. Proc Natl Acad Sci USA 104:8634–8640

    PubMed  CAS  Google Scholar 

  • Glantz RM (2001) Polarization analysis in the crayfish visual system. J Exp Biol 204:2383–2390

    PubMed  CAS  Google Scholar 

  • Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528

    PubMed  CAS  Google Scholar 

  • Guilford T, Harvey PH (1998) Ornithology—the purple patch. Nature 392:867

    Google Scholar 

  • Gumm JM, Loew ER, Mendelson TC (2012) Differences in spectral sensitivity within and among species of darters (genus Etheostoma). Vision Res 55:19–23

    PubMed  Google Scholar 

  • Ham WT, Mueller HA, Sliney DH (1976) Retinal sensitivity to damage from short wavelength light. Nature 260:153–155

    PubMed  Google Scholar 

  • Hasegawa EI, Sawada K, Abe K, Watanabe K, Uchikawa K, Okazaki Y et al (2008) The visual pigments of a deep-sea myctophid fish Myctophum nitidulum Garman; an HPLC and spectroscopic description of a non-paired rhodopsin–porphyropsin system. J Fish Biol 72:937–945

    CAS  Google Scholar 

  • Hastad O, Victorsson J, Odeen A (2005) Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc Natl Acad Sci USA 102:6391–6394

    PubMed  CAS  Google Scholar 

  • Hinton HE (1976) Possible significance of red patches of female crab-spider, misumena-vatia. J Zool 180:35–39

    Google Scholar 

  • Hopkins CD, Heiligenberg WF (1978) Evolutionary designs for electric signals and electroreceptors in gymnotid fishes of surinam. Behav Ecol Sociobiol 3:113–134

    Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision: polarization patterns in nature. Springer, Berlin

    Google Scholar 

  • Jacobs GH (1984) Within-species variations in visual capacity among squirrel-monkeys (Saimiri-Sciureus)—color-vision. Vision Res 24:1267–1277

    PubMed  CAS  Google Scholar 

  • Jacobs GH, Neitz J, Deegan JF (1991) Retinal receptors in rodents maximally sensitive to ultraviolet-light. Nature 353:655–656

    PubMed  CAS  Google Scholar 

  • Johnsen S (1994) Extraocular sensitivity to polarized light in an echinoderm. J Exp Biol 195:281–291

    PubMed  CAS  Google Scholar 

  • Johnsen S (2002) Cryptic and conspicuous coloration in the pelagic environment. Proc R Soc Lond Ser B-Biol Sci 269:243–256

    Google Scholar 

  • Johnsen S (2007) Does new technology inspire new directions? Examples drawn from pelagic visual ecology. Integr Comp Biol 47:799–807

    PubMed  Google Scholar 

  • Johnsen SN (2012) The optics of life: a biologist’s guide to light in nature. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Kamermans M, Hawryshyn C (2011) Teleost polarization vision: how it might work and what it might be good for. Philos Trans R Soc B-Biol Sci 366:742–756

    Google Scholar 

  • Kim JW, Brown GE, Dolinsek IJ, Brodeur NN, Leduc AOHC, Grant JWA (2009) Combined effects of chemical and visual information in eliciting antipredator behaviour in juvenile Atlantic salmon Salmo salar. J Fish Biol 74:1280–1290

    PubMed  Google Scholar 

  • Kleinlogel S, Marshall NJ, Horwood JM, Land MF (2003) Neuroarchitecture of the color and polarization vision system of the stomatopod haptosquilla. J Comp Neurol 467:326–342

    PubMed  Google Scholar 

  • Kreithen M, Keeton W (1974) Detection of polarized light by the homing pigeon, Columba livia. J Comp Physiol 89:83–92

    Google Scholar 

  • Kroger RHH, Gislen A (2004) Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans. Vision Res 44:2129–2134

    PubMed  Google Scholar 

  • Kroger RHH, Campbell MCW, Fernald RD, Wagner HJ (1999) Multifocal lenses compensate for chromatic defocus in vertebrate eyes. J Comp Physiol a-Sensory Neural Behav Physiol 184:361–369

    CAS  Google Scholar 

  • Land MF (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24:75–106

    PubMed  CAS  Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, New York

    Google Scholar 

  • Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11:475–480

    PubMed  CAS  Google Scholar 

  • Laughlin SB, van Steveninck RRD, Anderson JC (1998) A fundamental measure of the metabolic cost of neural information in the retina of the blowfly, Calliphora vicina. J Physiol Lond 506P:92

    Google Scholar 

  • Leech D, Johnsen S (2009) Light, photoreceptors, and UV vision. In: Likens G (ed) Encyclopedia of inland waters, vol 2. pp 671–681

  • Levine JS, Lobel PS, MacNichol EF (1980) Visual communication in fishes. In: Ali MA (ed) Environmental physiology of fishes. Plenum Press, New York, pp 447–475

    Google Scholar 

  • Lewis EE, Cane JH (1990) Pheromonal specificity of southeastern ips pine bark beetles reflects phylogenetic divergence (Coleoptera, Scolytidae). Can Entomol 122:1235–1238

    Google Scholar 

  • Lind O, Kelber A (2011) The spatial tuning of achromatic and chromatic vision in budgerigars. J Vision 11:1–9

    Google Scholar 

  • Lloyd JE, Wing SR (1983) Nocturnal aerial predation of fireflies by light-seeking fireflies. Science 222:634–635

    PubMed  CAS  Google Scholar 

  • Loew ER, Lythgoe JN (1978) Ecology of cone pigments in teleost fishes. Vision Res 18:715–722

    PubMed  CAS  Google Scholar 

  • Loew ER, Fleishman LJ, Foster RG, Provencio I (2002) Visual pigments and oil droplets in diurnal lizards: a comparative study of Caribbean anoles. J Exp Biol 205:927–938

    PubMed  Google Scholar 

  • Losey GS, Cronin TW, Goldsmith TH, Hyde D, Marshall NJ, McFarland WN (1999) The UV visual world of fishes: a review. J Fish Biol 54:921–943

    Google Scholar 

  • Luo DG, Yue WWS, Ala-Laurila P, Yau KW (2011) Activation of visual pigments by light and heat. Science 332:1307–1312

    PubMed  CAS  Google Scholar 

  • Lythgoe JN (1968) Visual pigments and visual range underwater. Vision Res 8:997

    Google Scholar 

  • Lythgoe JN, Partridge JC (1991) The modeling of optimal visual pigments of dichromatic teleosts in green coastal waters. Vision Res 31:361–371

    PubMed  CAS  Google Scholar 

  • Mallet J (1993) Speciation, raciation, and color pattern evolution in Heliconius butterflies: evidence from hybrid zones. In:  Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, New York, pp 226–260

  • Marshall NJ (2000) Communication and camouflage with the same ‘bright’ colours in reef fishes. Philos Trans R Soc Lond Ser B-Biol Sci 355:1243–1248

    CAS  Google Scholar 

  • Marshall J, Kent J, Cronin T (1999) Visual adaptations in crustaceans: spectral sensitivity in diverse habitats. In Archer SN (ed) Adaptive mechanisms in the ecology of vision. Kluwer, Dordrecht, pp 285–327

  • Mathger LM, Hanlon RT (2006) Anatomical basis for camouflaged polarized light communication in squid. Biol Lett 2:494–496

    PubMed  Google Scholar 

  • Mathger LM, Shashar N, Hanlon RT (2009) Do cephalopods communicate using polarized light reflections from their skin? J Exp Biol 212:2133–2140

    PubMed  Google Scholar 

  • McShea DW, Brandon RN (2010) Biology’s first law: the tendency for diversity and complexity to increase in evolutionary systems. University of Chicago Press, Chicago

    Google Scholar 

  • Menzel R (1979) Spectral sensitivity and color vision in invertebrates. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates, vol 7/6/6 A. Springer, Berlin, pp 503–580

  • Michiels NK, Anthes N, Hart NS, Herler J, Meixner AJ, Schleifenbaum F et al. (2008) Red fluorescence in reef fish, a novel signalling mechanism? BMC Ecol 8

  • Michinomae M, Masuda H, Seidou M, Kito Y (1994) Structural basis for wavelength discrimination in the banked retina of the firefly squid watasenia scintillans. J Exp Biol 193:1–12

    PubMed  Google Scholar 

  • Moody MF, Parriss JR (1961) The discrimination of polarized light by octopus—a behavioural and morphological study. Zeitschrift Fur Vergleichende Physiologie 44:268–291

    Google Scholar 

  • Muheim R (2011) Behavioural and physiological mechanisms of polarized light sensitivity in birds. Philos Trans R Soc B-Biol Sci 366:763–771

    Google Scholar 

  • Munz FW (1958) The photosensitive retinal pigments of fishes from relatively turbid coastal waters. J Gen Physiol 42:445–459

    PubMed  CAS  Google Scholar 

  • Nakano R, Skals N, Takanashi T, Surlykke A, Koike T, Yoshida K et al (2008) Moths produce extremely quiet ultrasonic courtship songs by rubbing specialized scales. Proc Natl Acad Sci USA 105:11812–11817

    PubMed  CAS  Google Scholar 

  • Narins PM (1990) Seismic communication in anuran amphibians. Bioscience 40:268–274

    Google Scholar 

  • Neitz M, Neitz J, Jacobs GH (1991) Spectral tuning of pigments underlying red-green color-vision. Science 252:971–974

    PubMed  CAS  Google Scholar 

  • Neville AC, Caveney S (1969) Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biol Rev Cambridge Philos Soc 44:531

    Google Scholar 

  • Niven JE, Anderson JC, Laughlin SB (2007) Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biol 5:828–840

    CAS  Google Scholar 

  • Odeen A, Hastad O, Alstrom P (2011) Evolution of ultraviolet vision in the largest avian radiation—the passerines. BMC Evol Biol 11

  • Pahlberg J, Lindstrom M, Ala-Laurila P, Fyhrquist-Vanni N, Koskelainen A, Donner K (2005) The photoactivation energy of the visual pigment in two spectrally different populations of Mysis relicta (Crustacea, Mysida). J Comp Physiol a-Neuroethol Sensory Neural Behav Physiol 191:837–844

    Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65

    Google Scholar 

  • Parri S, Alatalo RV, Kotiaho J, Mappes J (1997) Female choice for male drumming in the wolf spider Hygrolycosa rubrofasciata. Anim Behav 53:305–312

    Google Scholar 

  • Parry JWL, Carleton KL, Spady T, Carboo A, Hunt DM, Bowmaker JK (2005) Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi Cichlids. Curr Biol 15:1734–1739

    PubMed  CAS  Google Scholar 

  • Partridge JC, Douglas RH (1995) Far-red sensitivity of dragon fish. Nature 375:21–22

    CAS  Google Scholar 

  • Payne KB, Langbauer WR, Thomas EM (1986) Infrasonic calls of the Asian elephant (Elephas-Maximus). Behav Ecol Sociobiol 18:297–301

    Google Scholar 

  • Peake TM (2005) Eavesdropping in communication networks. In: Mcgregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge

    Google Scholar 

  • Peake TM, Terry AMR, McGregor PK, Dabelsteen T (2001) Male great tits eavesdrop on simulated male-to-male vocal interactions. Proc R Soc Lond Ser B-Biol Sci 268:1183–1187

    CAS  Google Scholar 

  • Perry RJ, McNaughton PA (1991) Response properties of cones from the retina of the tiger salamander. J Physiol-Lond 433:561–587

    PubMed  CAS  Google Scholar 

  • Plachetzki DC, Oakley TH (2007) Key transitions during the evolution of animal phototransduction: novelty, “tree-thinking,” co-option, and co-duplication. Integr Comp Biol 47:759–769

    PubMed  CAS  Google Scholar 

  • Reilly CRL, Thompson SH (2007) Temperature effects on low-light vision in juvenile rockfish (Genus Sebastes) and consequences for habitat utilization. J Comp Physiol a-Neuroethol Sensory Neural Behav PhysioL 193:943–953

    CAS  Google Scholar 

  • Roberts NW, Porter ML, Cronin TW (2011) The molecular basis of mechanisms underlying polarization vision. Philos Trans R Soc B-Biol Sci 366:627–637

    CAS  Google Scholar 

  • Romer H, Lang A, Hartbauer M (2010) The signaller’s dilemma: a cost-benefit analysis of public and private communication. PLoS ONE 5:e13325

    PubMed  Google Scholar 

  • Salcedo E, Zheng LJ, Phistry M, Bagg EE, Britt SG (2003) Molecular basis for ultraviolet vision in invertebrates. J Neurosci 23:10873–10878

    PubMed  CAS  Google Scholar 

  • Schaefer HM, Schaefer V, Levey DJ (2004) How plant-animal interactions signal new insights in communication. Trends Ecol Evol 19:577–584

    Google Scholar 

  • Seago AE, Brady P, Vigneron JP, Schultz TD (2009) Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J R Soc Interface 6:S165–S184

    PubMed  Google Scholar 

  • Seidou M, Sugahara M, Uchiyama H, Hiraki K, Hamanaka T, Michinomae M et al (1990) On the 3 visual pigments in the retina of the firefly squid, Watasenia-Scintillans. J Comp Physiol a-Sensory Neural Behav Physiol 166:769–773

    Google Scholar 

  • Shashar N, Rutledge PS, Cronin TW (1996) Polarization vision in cuttlefish—a concealed communication channel? J Exp Biol 199:2077–2084

    PubMed  Google Scholar 

  • Shi YS, Radlwimmer FB, Yokoyama S (2001) Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc Natl Acad Sci USA 98:11731–11736

    PubMed  CAS  Google Scholar 

  • Shuter BJ, Lester NP, LaRose J, Purchase CF, Vascotto K, Morgan G et al (2005) Optimal life histories and food web position: linkages among somatic growth, reproductive investment, and mortality. Can J Fish Aquat Sci 62:738–746

    Google Scholar 

  • Siebeck UE (2004) Communication in coral reef fish: the role of ultraviolet colour patterns in damselfish territorial behaviour. Anim Behav 68:273–282

    Google Scholar 

  • Siebeck UE, Marshall NJ (2001) Ocular media transmission of coral reef fish—can coral reef fish see ultraviolet light? Vision Res 41:133–149

    PubMed  CAS  Google Scholar 

  • Siebeck UE, Parker AN, Sprenger D, Mathger LM, Wallis G (2010) A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr Biol 20:407–410

    PubMed  CAS  Google Scholar 

  • Spaethe J, Briscoe AD (2004) Early duplication and functional diversification of the opsin gene family in insects. Mol Biol Evol 21:1583–1594

    PubMed  CAS  Google Scholar 

  • Stauffer HP, Semlitsch RD (1993) Effects of visual, chemical and tactile cues of fish on the behavioral-responses of tadpoles. Anim Behav 46:355–364

    Google Scholar 

  • Stavenga DG, Smits RP, Hoenders BJ (1993) Simple exponential functions describing the absorbency bands of visual pigment spectra. Vision Res 33:1011–1017

    PubMed  CAS  Google Scholar 

  • Stevens M, Cuthill IC (2007) Hidden messages: are ultraviolet signals a special channel in avian communication? Bioscience 57:501–507

    Google Scholar 

  • Stoddard PK (1999) Predation enhances complexity in the evolution of electric fish signals. Nature 400:254–256

    PubMed  CAS  Google Scholar 

  • Svensson GP, Okamoto T, Kawakita A, Goto R, Kato M (2010) Chemical ecology of obligate pollination mutualisms: testing the ‘private channel’ hypothesis in the Breynia-Epicephala association. New Phytol 186:995–1004

    PubMed  CAS  Google Scholar 

  • Sweeney A, Jiggins C, Johnsen S (2003) Insect communication: polarized light as a butterfly mating signal. Nature 423:31–32

    PubMed  CAS  Google Scholar 

  • Taylor RC, Buchanan BW, Doherty JL (2007) Sexual selection in the squirrel treefrog Hyla squirella: the role of multimodal cue assessment in female choice. Anim Behav 74:1753–1763

    Google Scholar 

  • Turner JR, White EM, Collins MA, Partridge JC, Douglas RH (2009) Vision in lanternfish (Myctophidae): adaptations for viewing bioluminescence in the deep-sea. Deep-Sea Res Part I-Oceanogr Res Papers 56:1003–1017

    CAS  Google Scholar 

  • Tuttle MD, Ryan MJ (1981) Bat predation and the evolution of frog vocalizations in the neotropics. Science 214:677–678

    PubMed  CAS  Google Scholar 

  • Viitala J, Korpimaki E, Palokangas P, Koivula M (1995) Attraction of kestrels to vole scent marks visible in Ultraviolet-Light. Nature 373:425–427

    CAS  Google Scholar 

  • Wagner WE (1996) Convergent song preferences between female field crickets and acoustically orienting parasitoid flies. Behav Ecol 7:279–285

    Google Scholar 

  • Wald G, Rayport S (1977) Vision in annelid worms. Science 196:1434–1439

    PubMed  CAS  Google Scholar 

  • Walla P, Barth FG, Eguchi E (1996) Spectral sensitivity of single photoreceptor cells in the eyes of the ctenid spider Cupiennius salei Keys. Zoolog Sci 13:199–202

    Google Scholar 

  • Warrant EJ (2010) Polarisation vision: beetles see circularly polarised light. Curr Biol 20:R610–R612

    PubMed  CAS  Google Scholar 

  • Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712

    PubMed  Google Scholar 

  • Waterman TH, Forward RB (1970) Field evidence for polarized light sensitivity in Fish Zenarchopterus. Nature 228:85

    Google Scholar 

  • White EM, Goncalves DM, Partridge JC, Oliveira RF (2004) Vision and visual variation in the peacock blenny. J Fish Biol 65:227–250

    Google Scholar 

  • Widder EA, Latz MI, Herring PJ, Case JF (1984) Far red bioluminescence from 2 deep-sea fishes. Science 225:512–514

    PubMed  CAS  Google Scholar 

  • Wilkens LA (1984) Ultraviolet sensitivity in hyperpolarizing photoreceptors of the Giant Clam Tridacna. Nature 309:446–448

    Google Scholar 

  • Williams NH, Dodson CH (1972) Selective attraction of male euglossine bees to orchid floral fragrances and its importance in long-distance pollen flow. Evolution 26:84

    Google Scholar 

  • Wood AM, Truscott RJW (1993) UV filters in human lenses—tryptophan catabolism. Exp Eye Res 56:317–325

    PubMed  CAS  Google Scholar 

  • Wynberg H, Meijer EW, Hummelen JC, Dekkers HPJM, Schippers PH, Carlson AD (1980) Circular-polarization observed in bioluminescence. Nature 286:641–642

    CAS  Google Scholar 

  • Yamashita S, Tateda H (1976) Spectral sensitivities of jumping spider eyes. J Comp Physiol 105:29–41

    Google Scholar 

  • Yokoyama S (1994) Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates. Mol Biol Evol 11:32–39

    PubMed  CAS  Google Scholar 

  • Yokoyama S (2000) Molecular evolution of vertebrate visual pigments. Progr Retinal Eye Res 19:385–419

    CAS  Google Scholar 

  • Yokoyama S, Radlwimmer FB (2001) The molecular genetics and evolution of red and green color vision in vertebrates. Genetics 158:1697–1710

    PubMed  CAS  Google Scholar 

  • Yokoyama S, Radlwimmer FB, Blow NS (2000) Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc Natl Acad Sci USA 97:7366–7371

    PubMed  CAS  Google Scholar 

  • Zeiger J, Goldsmith TH (1989) Spectral properties of porphyropsin from an invertebrate. Vision Res 29:519–527

    PubMed  CAS  Google Scholar 

  • Zigman S, Bagley SJ (1971) Near ultraviolet light effects on dogfish retinal rods. Exp Eye Res 12:155

    PubMed  CAS  Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Quart Rev Biol 73:415–438

    Google Scholar 

Download references

Acknowledgments

The authors thank Graeme Ruxton, Martin Stevens, Eric Warrant, and two anonymous reviewers for comments on an earlier version of this manuscript. SJ was supported in part by Grants from the National Science Foundation (OCE-0852138) and the office of Naval Research (N00014-09-1-1053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Brandley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandley, N.C., Speiser, D.I. & Johnsen, S. Eavesdropping on visual secrets. Evol Ecol 27, 1045–1068 (2013). https://doi.org/10.1007/s10682-013-9656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-013-9656-9

Keywords

Navigation