Skip to main content

Advertisement

Log in

Population responses within a landscape matrix: a macrophysiological approach to understanding climate change impacts

  • Original paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Global environmental change (GEC) is a significant concern. However, forecasting the outcomes of this change for species and ecosystems remains a major challenge. In particular, predicting specific changes in systems where initial conditions, instabilities, and model errors have large impacts on the outcome is problematic. Indeed, predictive community ecology has been deemed unworthy of pursuit or an unreachable goal. However, new developments in large-scale biology provide ways of thinking that might substantially improve forecasts of local and regional impacts of climate change. Most notably, these are the explicit recognition of the regional and landscape contexts within which populations reside, the matrix approach that can be used to investigate the consequences of population variation across space and within assemblages, and the development of macrophysiology, which explicitly seeks to understand the ecological implications of physiological variation across large spatial and temporal scales. Here we explore how a combination of these approaches might promote further understanding and forecasting of the effects of global climate change and perhaps other GEC drivers on biodiversity. We focus on the population level, examining the ways in which environmental variation might be translated through performance and its plasticity to variation in demography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Algar AC, Kerr JT, Currie DJ (2009) Evolutionary constraints on regional faunas: whom, but not how many. Ecol Lett 12:57–65

    Article  Google Scholar 

  • Alleaume-Benharira M, Pen IR, Ronce O (2006) Geographical patterns of adaptation within a species’ range: interactions between drift and gene flow. J Evol Biol 19:203–215

    Article  CAS  PubMed  Google Scholar 

  • Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:1545–1548

    Article  CAS  PubMed  Google Scholar 

  • Anderson BJ, Akçakaya HR, Araújo MB, Fordham DA, Martinez-Meyer E, Thuiller W, Brook BW (2009) Dynamics of range margins for metapopulations under climate change. Proc R Soc Lond 276:1415–1420

    Article  CAS  Google Scholar 

  • Angilletta MJ (2006) Estimating and comparing thermal performance curves. J Therm Biol 31:541–545

    Article  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation. A theoretical and empirical synthesis. Oxford University Press, Oxford

    Google Scholar 

  • Angilletta MJ, Wilson RS, Navas CA, James RS (2003) Tradeoffs and the evolution of thermal reaction norms. Trends Ecol Evol 18:234–240

    Article  Google Scholar 

  • Araújo MB, Whittaker RJ, Ladle RJ et al (2005) Reducing uncertainty in projections of extinction risk from climate change. Global Ecol Biogeogr 14:529–538

    Article  Google Scholar 

  • Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag J Sci 4:237–276

    Google Scholar 

  • Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19

    Article  Google Scholar 

  • Austin MP, Belbin L, Meyers JA et al (2006) Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol Modell 199:197–216

    Article  Google Scholar 

  • Azeria ET, Kolasa J (2008) Nestedness, niche metrics and temporal dynamics of a metacommunity in a dynamic natural model system. Oikos 117:1006–1019

    Article  Google Scholar 

  • Beale CM, Lennon JJ, Gimona A (2008) Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc Natl Acad Sci USA 105:14908–14912

    Article  CAS  PubMed  Google Scholar 

  • Bell G (2003) The interpretation of biological surveys. Proc R Soc Lond B 270:2531–2542

    Article  Google Scholar 

  • Berlow EL, Neutel AM, Cohen JE et al (2004) Interaction strengths in food webs: issues and opportunities. J Animal Ecol 73:585–598

    Article  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–537

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2006) Evolutionary response to rapid climate change. Science 312:1477–1478

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2008) Genetic responses to rapid climate change: it’s seasonal timing that matters. Mol Ecol 17:157–166

    Article  CAS  PubMed  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM et al (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148

    Article  CAS  PubMed  Google Scholar 

  • Brisson N, Sguin B, Bertuzzi P (1992) Agrometeorological soil-water balance for crop simulation-models. Agric Forest Meteorol 59:267–287

    Article  Google Scholar 

  • Brook BW (2008) Synergies between climate change, extinctions and invasive invertebrates. Wildl Res 35:249–252

    Article  Google Scholar 

  • Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers and global change. Trends Ecol Evol 23:453–460

    Article  PubMed  Google Scholar 

  • Brown CR, Brown MB (2000) Weather-mediated natural selection on arrival time in cliff swallows (Petrochelidon pyrrhonota). Behav Ecol Sociobiol 47:339–345

    Article  Google Scholar 

  • Buckley LB (2008) Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am Nat 171:E1–E19

    Article  PubMed  Google Scholar 

  • Chase JM (2005) Towards a really unified theory for metacommunities. Funct Ecol 19:182–186

    Article  Google Scholar 

  • Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434

    Article  CAS  PubMed  Google Scholar 

  • Chown SL (1993) Desiccation resistance in six sub-Antarctic weevils (Coleoptera: Curculionidae): humidity as an abiotic factor influencing assemblage structure. Funct Ecol 7:318–325

    Article  Google Scholar 

  • Chown SL, Gaston KJ (2008) Macrophysiology for a changing world. Proc R Soc Lond B 275:1469–1478

    Article  Google Scholar 

  • Chown SL, Terblanche JS (2007) Physiological diversity in insects: ecological and evolutionary contexts. Adv Insect Physiol 33:50–152

    Article  Google Scholar 

  • Chown SL, Gaston KJ, Robinson D (2004a) Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Funct Ecol 18:159–167

    Article  Google Scholar 

  • Chown SL, Sinclair BJ, Leinaas HP et al (2004b) Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol 2:1701–1707

    Article  CAS  Google Scholar 

  • Chown SL, Slabber S, McGeoch MA et al (2007) Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc R Soc London B 274:2661–2667

    Article  Google Scholar 

  • Chown SL, Sørensen JG, Sinclair BJ (2008) Physiological variation and phenotypic plasticity: a response to ‘Plasticity in arthropod cryotypes’ by Hawes and Bale. J Exp Biol 211:3353–3357

    Article  CAS  PubMed  Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Cody ML, Overton JM (1996) Short-term evolution of reduced dispersal in island plant populations. J Ecol 84:53–61

    Article  Google Scholar 

  • Crozier L, Dwyer G (2006) Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. Am Nat 167:853–866

    Article  Google Scholar 

  • David JR, Gibert P, Gravot E et al (1997) Phenotypic plasticity and developmental temperature in Drosophila: analysis and significance of reaction norms of morphometrical traits. J Therm Biol 22:441–451

    Article  Google Scholar 

  • Davies RG, Irlich UM, Chown SL, Gaston KJ (2009) Energy and ocean availability predict latitudinal asymmetry in global species richness of procellariiform seabirds. Global Ecol Biogeogr (in press)

  • de Jong G (2005) Evolution of phenotypic plasticity: patterns of plasticity and the emergence of ecotypes. New Phytol 166:101–118

    Article  PubMed  Google Scholar 

  • de Mazancourt C, Johnson E, Barraclough TG (2008) Biodiversity inhibits species’ evolutionary responses to changing environments. Ecol Lett 11:380–388

    Article  PubMed  Google Scholar 

  • Deere JA, Chown SL (2006) Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. Am Nat 168:630–644

    Article  PubMed  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672

    Article  CAS  PubMed  Google Scholar 

  • Dillon ME, Cahn LRY, Huey RB (2007) Life history consequences of temperature transients in Drosophila melanogaster. J Exp Biol 210:2897–2904

    Article  PubMed  Google Scholar 

  • Dray S, Legendre P (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412

    Article  PubMed  Google Scholar 

  • Dunham AE, Grant BW, Overall KL (1989) Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiol Zool 62:335–355

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C et al (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R et al (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82

    Article  CAS  PubMed  Google Scholar 

  • Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science 294:151–154

    Article  CAS  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 61:243–282

    Article  CAS  Google Scholar 

  • Foden W, Midgley GF, Hughes G et al (2007) A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Divers Distrib 13:645–653

    Article  Google Scholar 

  • Foody GM (2004) Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecol Biogeogr 13:315–320

    Article  Google Scholar 

  • Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104:1278–1282

    Article  CAS  PubMed  Google Scholar 

  • Gabriel W (2005) How stress selects for reversible phenotypic plasticity. J Evol Biol 18:873–883

    Article  CAS  PubMed  Google Scholar 

  • Gaines SD, Denny MW (1993) The largest, smallest, highest, lowest, longest, and shortest: extremes in ecology. Ecology 74:1677–1692

    Article  Google Scholar 

  • Gaston KJ (1999) Implications of interspecific and intraspecific abundance-occupancy relationships. Oikos 86:195–207

    Article  Google Scholar 

  • Gaston KJ (2002) Abundance, occupancy and conservation biology. In: Chamberlain DE, Wilson AM (eds) Avian landscape ecology: pure and applied issues in the large-scale ecology of birds. Proceedings of the 2002 IALE(UK) conference. IALE(UK). Garstang, Lancs, pp 215–227

    Google Scholar 

  • Gaston KJ (2009) Geographic range limits: achieving synthesis. Proc R Soc Lond B 276:1395–1406

    Article  Google Scholar 

  • Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell Science, Oxford

    Book  Google Scholar 

  • Gaston KJ, Chown SL, Evans KL (2008) Ecogeographical rules: elements of a synthesis. J Biogeogr 35:483–500

    Article  Google Scholar 

  • Gaston KJ, Chown SL, Calosi P et al (2009) Macrophysiology: a conceptual re-unification. Am Nat 174:595–612

    Google Scholar 

  • Gause GF (1942) The relation of adaptability to adaptation. Quart Rev Biol 17:99–114

    Article  Google Scholar 

  • Ghalambor CK, Huey RB, Martin PR et al (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol 46:5–17

    Article  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP et al (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Gienapp P, Leimu R, Merilä J (2007) Responses to climate change in avian migration time—microevolution versus phenotypic plasticity. Clim Res 35:25–35

    Article  Google Scholar 

  • Gienapp P, Teplitsky C, Alho JS et al (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist GW (1995) Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am Nat 146:252–270

    Article  Google Scholar 

  • Goldberg EE, Lande RL (2007) Species’ borders and dispersal barriers. Am Nat 170:297–304

    Article  PubMed  Google Scholar 

  • Gore A (2006) An inconvenient truth. The planetary emergency of global warming and what we can do about it. Bloomsbury, London

    Google Scholar 

  • Hansen J, Sato M, Ruedy R et al (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293

    Article  CAS  PubMed  Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162:1243–1248

    Article  CAS  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  PubMed  Google Scholar 

  • Hashmi D, Causey D (2008) A system in which available energy per se controls alpha diversity: marine pelagic birds. Am Nat 171:419–429

    Article  PubMed  Google Scholar 

  • Hawkins BA, Field R, Cornell HV et al (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Hazel W, Smock R, Lively CM (2004) The ecological genetics of conditional strategies. Am Nat 163:888–900

    Article  PubMed  Google Scholar 

  • Heinz SK, Mazzucco R, Dieckmann U (2009) Speciation and the evolution of dispersal along environmental gradients. Evol Ecol 23:53–70

    Article  Google Scholar 

  • Helmuth B, Kingsolver JG, Carrington E (2005) Biophysics, physiological ecology, and climate change: does mechanism matter? Ann Rev Physiol 67:177–201

    Article  CAS  Google Scholar 

  • Helmuth B, Mieszkowska N, Moore P et al (2006) Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373–404

    Article  Google Scholar 

  • Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild populations. Mol Ecol 17:20–29

    Article  PubMed  Google Scholar 

  • Hoffmann AA (1995) Acclimation: increasing survival at a cost. Trends Ecol Evol 10:1–2

    Article  Google Scholar 

  • Holmgren M, López BC, Gutierréz JR et al (2006) Herbivory and plant growth rate determine the success of El Niño Southern Oscillation-driven tree establishment in semiarid South America. Global Change Biol 12:2263–2271

    Article  Google Scholar 

  • Holt RD, Keitt TH (2005) Species’ borders: a unifying theme in ecology. Oikos 108:3–6

    Article  Google Scholar 

  • Holt RD, Barfield M, Gomulkiewicz R (2004) Temporal variation can facilitate niche evolution in harsh sink environments. Am Nat 164:187–200

    Article  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135

    Article  Google Scholar 

  • Huey RB, Kingsolver JG (1993) Evolution of resistance to high temperature in ectotherms. Am Nat 142:S21–S46

    Article  Google Scholar 

  • Huey RB, Berrigan D, Gilchrist GW et al (1999) Testing the adaptive significance of acclimation: a strong inference approach. Am Zool 39:323–336

    Google Scholar 

  • Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioral inertia in evolution: a null model approach. Am Nat 161:357–366

    Article  PubMed  Google Scholar 

  • Hui C, McGeoch MA, Warren M (2006) A spatially explicit approach to estimating species occupancy and spatial correlation. J Animal Ecol 75:140–147

    Article  Google Scholar 

  • Huxley A (1950) Themes and variations. Chatto and Windus, London

    Google Scholar 

  • Izem R, Kingsolver JG (2005) Variation in continuous reaction norms: quantifying directions of biological interest. Am Nat 166:277–289

    Article  PubMed  Google Scholar 

  • Jentsch A, Beierkuhnlein C (2008) Research frontiers in climate change: effects of extreme meteorological events on ecosystems. C.R. Geoscience 340:621–628

    Article  Google Scholar 

  • Jouventin P, Weimerskirch H (1990) Satellite tracking of Wandering albatrosses. Nature 343:746–748

    Article  Google Scholar 

  • Kalmar A, Currie DJ (2007) A unified model of avian species richness on islands and continents. Ecology 88:1309–1321

    Article  PubMed  Google Scholar 

  • Kearney M (2006) Habitat, environment and niche: what are we modelling? Oikos 115:186–191

    Article  Google Scholar 

  • Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131

    Article  Google Scholar 

  • Kearney M, Porter WP (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    Article  PubMed  Google Scholar 

  • Kearney M, Phillips BL, Tracy CR et al (2008) Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography 31:423–434

    Article  Google Scholar 

  • Kearney M, Porter WP, Williams C et al (2009) Integrating biophysical models and evolutionary theory to predict climate impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol 23:528–538

    Google Scholar 

  • Keith DA, Akçakaya HR, Thuiller W (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitats models. Biol Lett 4:560–563

    Article  PubMed  Google Scholar 

  • Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23

    Article  CAS  PubMed  Google Scholar 

  • Kleidon A, Mooney HA (2000) A global distribution of biodiversity inferred from climatic constraints: results from a process-based modelling study. Global Change Biol 6:507–523

    Article  Google Scholar 

  • Klok CJ, Chown SL (2003) Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biol J Linn Soc 78:401–414

    Article  Google Scholar 

  • Kristensen TN, Hoffmann AA, Overgaard J et al (2008) Costs and benefits of cold acclimation in field-released Drosophila. Proc Natl Acad Sci USA 105:216–221

    Article  CAS  PubMed  Google Scholar 

  • Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192

    Article  Google Scholar 

  • Le Roux PC, McGeoch MA (2008) Changes in climate extremes, variability and signature on sub-Antarctic Marion Island. Climatic Change 86:309–329

    Article  Google Scholar 

  • Legendre P, Galzin R, Harmelin-Vivien ML (1997) Relating behaviour to habitat: solutions to the fourth-corner problem. Ecology 78:547–562

    Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Leimar O (2009) Environmental and genetic cues in the evolution of phenotypic polymorphism. Evol Ecol 23:125–135

    Article  Google Scholar 

  • Liefting M, Ellers J (2008) Habitat specific differences in thermal plasticity in natural populations of a soil arthropod. Biol J Linn Soc 94:265–271

    Article  Google Scholar 

  • Liefting M, Hoffmann AA, Ellers J (2009) Plasticity versus environmental canalization: population differences in thermal responses along a latitudinal gradient in Drosophila serrata. Evolution 63:1954–1963

    Article  PubMed  Google Scholar 

  • Lima M, Keymer JE, Jaksic FM (1999) El Niño—Southern oscillation—driven rainfall variability and delayed density dependence cause rodent outbreaks in western South America: linking demography and population dynamics. Am Nat 153:476–491

    Article  Google Scholar 

  • Loeschcke V, Hoffmann AA (2007) Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature. Am Nat 169:175–183

    Article  PubMed  Google Scholar 

  • Lynch M, Gabriel W (1987) Environmental tolerance. Am Nat 129:283–303

    Article  Google Scholar 

  • Mahlman JD (1998) Science and non-science concerning human-caused global warming. Annu Rev Energy Environ 23:83–105

    Article  Google Scholar 

  • Marais E, Chown SL (2008) Beneficial acclimation and the Bogert effect. Ecol Lett 11:1027–1036

    Article  PubMed  Google Scholar 

  • Marais E, Terblanche JS, Chown SL (2009) Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera. Helcomyzidae). J Insect Physiol 55:336–343

    Article  CAS  PubMed  Google Scholar 

  • Masel J, King OD, Maughan H (2007) The loss of adaptive plasticity during long periods of environmental stasis. Am Nat 169:38–46

    Article  PubMed  Google Scholar 

  • May RM (1986) The search for patterns in the balance of nature: advances and retreats. Ecology 67:1115–1126

    Article  Google Scholar 

  • McGeoch MA, le Roux PC, Hugo EA et al (2006) Species and community responses to short-term climate manipulation: microarthropods in the sub-Antarctic. Austral Ecol 31:719–731

    Article  Google Scholar 

  • McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140:1010–1027

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

  • Moran NA (1992) The evolutionary maintenance of alternative phenotypes. Am Nat 139:971–989

    Article  Google Scholar 

  • Moyle RG, Filardi CE, Smith CE et al (2009) Explosive Pleistocene diversification and hemispheric expansion of a great speciator. Proc Natl Acad Sci USA 106:1863–1868

    Article  CAS  PubMed  Google Scholar 

  • O’Brien EM, Field R, Whittaker RJ (2000) Climatic gradients in woody plant (tree and shrub) diversity: water-energy dynamics, residual variation, and topography. Oikos 89:588–600

    Article  Google Scholar 

  • Orizaola G, Laurila A (2009) Microgeographic variation in temperature-induced plasticity in an isolated amphibian population. Evol Ecol. doi:10.1007/s10682-008-9285-x

  • Osovitz CJ, Hoffman GE (2007) Marine macrophysiology: studying physiological variation across large spatial scales in marine systems. Comp Biochem Physiol A 147:821–827

    Article  CAS  Google Scholar 

  • Overpeck JT, Cole JE (2006) Abrupt change in Earth’s climate system. Annu Rev Environ Res 31:1–31

    Article  Google Scholar 

  • Parker BR, Vinebrooke RD, Schindler DW (2008) Recent climate extremes alter alpine lake ecosystems. Proc Natl Acad Sci USA 105:12927–12931

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Parvinen K, Dieckmann U, Gyllenberg M et al (2003) Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J Evol Biol 16:143–153

    Article  CAS  PubMed  Google Scholar 

  • Pelini SL, Dzurisin JDK, Prior KM et al (2009) Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. Proc Natl Acad Sci USA 106:11160–11165

    Article  CAS  PubMed  Google Scholar 

  • Pimm S, Raven P, Peterson A et al (2006) Human impacts on the rates of recent, present, and future bird extinctions. Proc Natl Acad Sci USA 103:10941–10946

    Article  CAS  PubMed  Google Scholar 

  • Porter WP (1989) New animal models and experiments for calculating growth potential at different elevations. Physiol Zool 62:286–313

    Google Scholar 

  • Porter WP, Budaraju S, Stewart WE et al (2000) Calculating climate effects on birds and mammals: impacts on biodiversity, conservation, population parameters, and global community structure. Am Zool 40:597–630

    Article  Google Scholar 

  • Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  PubMed  CAS  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA et al (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Article  CAS  PubMed  Google Scholar 

  • Pulido F (2007) Phenotypic changes in spring arrival: evolution, phenotypic plasticity, effects of weather and condition. Clim Res 35:5–23

    Article  Google Scholar 

  • Pulido F, Berthold P (2004) Microevolutionary response to climate change. Adv Ecol Res 35:151–183

    Article  Google Scholar 

  • Régnìere J, Bentz B (2007) Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. J Insect Physiol 53:559–572

    Article  PubMed  CAS  Google Scholar 

  • Relyea RA (2002) Costs of phenotypic plasticity. Am Nat 159:272–282

    Article  PubMed  Google Scholar 

  • Ricklefs R (2008) Disintegration of the ecological community. Am Nat 172:741–750

    Article  PubMed  Google Scholar 

  • Rohr JR, Raffel TR, Romansic JM et al (2008) Evaluating the links between climate, disease spread, and amphibian declines. Proc Natl Acad Sci USA 105:17436–17441

    Article  CAS  PubMed  Google Scholar 

  • Root TL, Price JT, Hall KR et al (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M et al (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  CAS  PubMed  Google Scholar 

  • Rovito SM, Parra-Olea G, Vásquez-Almazán CR et al (2009) Dramatic declines in Neotropical salamander populations are an important part of the global amphibian crisis. Proc Natl Acad Sci USA 106:3231–3236

    Article  CAS  PubMed  Google Scholar 

  • Sibly RM, Calow P (1986) Physiological ecology of animals. An evolutionary approach. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Simberloff D (2004) Community ecology: is it time to move on? Am Nat 163:787–799

    Article  PubMed  Google Scholar 

  • Simmons AD, Thomas CD (2004) Changes in dispersal during species’ range expansions. Am Nat 164:378–395

    Article  PubMed  Google Scholar 

  • Šizling AL, Šizlingová E, Storch D et al (2009) Rarity, commonness and the contribution of individual species to species richness patterns. Am Nat 174:82–93

    Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Stachowicz JJ, Terwin JR, Whitlatch RB et al (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci USA 99:15497–15500

    Article  CAS  PubMed  Google Scholar 

  • Staley JT, Mortimer SR, Masters GJ et al (2006) Drought stress differentially affects leaf-mining species. Ecol Entomol 31:460–469

    Article  Google Scholar 

  • Stern N (2007) The economics of climate change. The Stern review. Cambridge University Press, Cambridge

    Google Scholar 

  • Stige LC, Stave J, Chan K-S et al (2006) The effect of climate variation on agro-pastoral production in Africa. Proc Natl Acad Sci USA 103:3049–3053

    Article  CAS  PubMed  Google Scholar 

  • Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65

    Article  CAS  PubMed  Google Scholar 

  • Storch D, Sizling AL, Reif J et al (2008) The quest for a null model for macroecological patters: geometry of species distributions at multiple spatial scales. Ecol Lett 11:771–784

    Article  PubMed  Google Scholar 

  • Sultan SE, Spencer HG (2002) Metapopulation structure favors plasticity over local adaptation. Am Nat 160:271–283

    Article  PubMed  Google Scholar 

  • Tauber MJ, Tauber CA, Nyrop JP et al (1998) Moisture, a vital but neglected factor in the seasonal ecology of insects: hypotheses and tests of mechanisms. Environ Entomol 27:523–530

    Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273

    Article  PubMed  Google Scholar 

  • Thomas CD, Bodsworth EJ, Wilson RJ et al (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    Article  PubMed  Google Scholar 

  • Thomas CD, Bulman CR, Wilson RJ (2008) Where within a geographical range do species survive best? A matter of scale. Insect Conserv Divers 1:2–8

    Article  Google Scholar 

  • Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152

    Article  Google Scholar 

  • Tolley KA, Davies SJ, Chown SL (2008) Deconstructing a controversial local range expansion: conservation biogeography of the painted reed frog (Hyperolius marmoratus) in South Africa. Divers Distrib 14:400–411

    Article  Google Scholar 

  • Tufto J (2000) The evolution of plasticity and nonplastic spatial and temporal adaptations in the presence of imperfect environmental cues. Am Nat 156:121–130

    Article  PubMed  Google Scholar 

  • Turner J, Overland JE, Walsh JE (2007) An Arctic and Antarctic perspective on recent climate change. Int J Climatol 27:277–293

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Baccompte J et al (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • van Kleunen M, Fischer M (2005) Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol 166:49–60

    Article  PubMed  Google Scholar 

  • van Kleunen M, Fischer M (2007) Commentary: progress in the detection of costs of phenotypic plasticity in plants. New Phytol 176:727–730

    Article  PubMed  Google Scholar 

  • van Tienderen P (1991) Evolution of generalists and specialists in spatially heterogeneous environments. Evolution 45:1317–1331

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Walther G-R, Berger S, Sykes MT (2005) An ecological ‘footprint’ of climate change. Proc R Soc Lond B 272:1427–1432

    Article  Google Scholar 

  • Welbergen JA, Klose SM, Markus N, Eby P (2008) Climate change and the effects of temperature extremes on Australian flying foxes. Proc R Soc Lond B 275:419–425

    Article  Google Scholar 

  • Whisler FD, Acock B, Baker DN et al (1986) Crop simulation models in agronomic systems. Adv Agron 40:141–208

    Article  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  • Wikelski M, Spinney L, Schelsky W et al (2003) Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes. Proc R Soc Lond B 270:2383–2388

    Article  Google Scholar 

  • Worthen WB, Jones MT, Jetton RM (1998) Community structure and environmental stress: desiccation promotes nestedness in mycophagous fly communities. Oikos 81:45–54

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mike Angilletta, Jen Lee, John Terblanche and an anonymous referee for comments on a previous version of this manuscript. This work was partially supported by NRF Grant IFR2008071500012 to SLC and partially by a Stellenbosch University Overarching Strategic Plan grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Chown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chown, S.L., Gaston, K.J., van Kleunen, M. et al. Population responses within a landscape matrix: a macrophysiological approach to understanding climate change impacts. Evol Ecol 24, 601–616 (2010). https://doi.org/10.1007/s10682-009-9329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-009-9329-x

Keywords

Navigation