Skip to main content
Log in

Polymorphisms of the FT gene as a tool to identify underground rhizome types of bamboos

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The Flowering Locus T (FT)-like genes of angiosperms are highly conserved. The FT-encoded proteins include a phosphatidylethanolamine-binding domain that is involved in the control of the shoot apical meristem identity and flowering time. In the present study, FT genes were investigated in 20 bamboo species that are grouped into sympodial, mixed and scattered bamboos based on their morphology. All examined orthologous FT genes consisted of four exons and three introns. Their encoded protein sequences contained the critical amino acid residues Tyr85, Glu109, Leu128, Tyr134, Trp138, Arg139, Gln140 and Asn152, of which each possesses a biological function. The DNA sequences were rich in single nucleotide polymorphism (SNP) sites. The SNP frequency was 1 SNP/16.8 bp, and the nucleotide diversity (π) equaled 0.265. Some SNPs altered restriction enzyme sites or resulted in changes in amino acid contents. The correlation analysis showed that several SNPs were informative in relation to the underground rhizome types of bamboos. Therefore, FT polymorphisms could be used as a tool to identify the underground rhizome types of bamboos. The phylogenetic tree constructed based on the FT gene sequences showed that the obtained clustering was consistent with the underground rhizome types. The SNP markers developed in the present study will provide information on the genetic diversity of bamboos and they can aid taxonomic study as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309(5737):1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25(3):605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312(5776):1040–1043

    Article  PubMed  Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379(6568):791–795

    Article  CAS  PubMed  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  CAS  PubMed  Google Scholar 

  • Carmel-Goren L, Liu YS, Lifschitz E, Zamir D (2003) The SELF-PRUNING gene family in tomato. Plant Mol Biol 52(6):1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Carmona MJ, Calonje M, Martínez-Zapater JM (2007) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63(5):637–650

    Article  CAS  PubMed  Google Scholar 

  • Chardon F, Damerval C (2005) Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol 61(5):579–590

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316(5827):1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Meng X, Hou ZL, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146(1):250–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang W (1995) Bamboo taxonomy. China Forestry Press, Beijing, pp 11–22

    Google Scholar 

  • Guo XQ, Wang Y, Wang Q, Xu ZE, Lin XL (2015) Molecular characterization of FLOWERING LOCUS T(FT)genes from bamboo (Phyllostachys violascens). J Plant Biochem Biotechnol. doi:10.1007/s13562-015-0322-x

    Google Scholar 

  • Gyllenstrand N, Clapham D, Källman T, Lagercrantz U (2007) A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiol 144(1):248–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. PNAS 102(21):7748–7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedman H, Källman T, Lagercrantz U (2009) Early evolution of the MFT-like gene family in plants. Plant Mol Biol 70(4):359–369

    Article  CAS  PubMed  Google Scholar 

  • Ho WWH, Weigel D (2014) Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26(2):552–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286(5446):1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43(10):1096–1105

    Article  CAS  PubMed  Google Scholar 

  • Lee R, Baldwin S, Kenel F, Mccallum J, Macknight R (2013) FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat Commun 4:2884–2892

    PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Sliva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478(7367):119–122

    Article  CAS  PubMed  Google Scholar 

  • Ohshima S, Murata M, Sakamoto W, Ogura Y, Motoyoshi F (1997) Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol Gen Genet 254(2):186–194

    Article  CAS  PubMed  Google Scholar 

  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. PNAS 106:4555–4560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoyo K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316(5827):1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Tachibana C, Tamaki S, Taoka K, Kyozuka J, Shimamoto K (2015) Hd3a promotes lateral branching in rice. Plant J 82:256–266

    Article  CAS  PubMed  Google Scholar 

  • Wickland DP, Hanzawa Y (2015) The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Plant, Mol. doi:10.1016/j.molp.2015.01.007

    Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309(5737):1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Yoo SY, Kardailsky I, Lee JS, Weigel D, Ahn JH (2004) Acceleration of flowering by overexpression of MFT. Mol Cells 17(1):95–101

    CAS  PubMed  Google Scholar 

  • Zhang L (2012) Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome and SDG8, FT function synergistically to regulate plant architecture and flowering time. Doctoral dissertation, Sichuan Agricultural University

Download references

Acknowledgements

We are grateful to Prof. Helena Korpelainen (Department of Agricultural Sciences, University of Helsinki, Finland) for her critical comments on the manuscript. This work was supported by Grants from the National Natural Science Foundation of China (Grant No. 30901155), the Natural Science Foundation of the Zhejiang Province (Grant No. Y307499), the Pre-research Foundation of the Center for the Cultivation of Subtropical Forest Resources (CCSFR2013001) and Zhejiang Province Preeminence Youth Fund (LR12C16001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-qin Guo.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest concerning this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Ze., Chen, Hj., Ji, Lf. et al. Polymorphisms of the FT gene as a tool to identify underground rhizome types of bamboos. Euphytica 213, 25 (2017). https://doi.org/10.1007/s10681-016-1824-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-016-1824-x

Keywords

Navigation