Skip to main content
Log in

The inheritance of chemical phenotype in Cannabis sativa L. (V): regulation of the propyl-/pentyl cannabinoid ratio, completion of a genetic model

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

In order to complete a genetic model for the inheritance of chemotype in Cannabis, this paper explores the regulation of the propyl-/pentyl cannabinoid ratio. Plants almost pure in compounds with a C5 side chain are by far the most common, and such a chemotype can be considered a wild-type condition. Mutant progenitors with higher levels of the rarer cannabinoid THC-C3 (tetrahydrocannabivarin) were identified. Their propyl cannabinoid proportion in the total cannabinoid fraction (PC3) ranged from 14 to 69 %, which, through selective inbreeding, could be increased to highly specific lineage maxima. Inbred plants with maximised PC3 derived from the different progenitors, were then crossed with a pure C5 wild type and the PC3 distribution patterns of the F2s examined. Distinct patterns, compatible with oligogenic and polygenic segregation appeared. It was hypothesised that the PC3 regulating loci of the six source progenitors would be at least partially different, complementary, and additive in their phenotypical effect. So, high PC3 offspring from the different lineages were mutually crossed. Inbred lines derived from multi-cross hybrid combinations reached unprecedented PC3 levels of up to 96 % which supports the hypothesis. For the regulation of C3/C5 ratios, a model of a multiple locus A 1A 2–…A n is proposed, with the pentyl- and propyl cannabinoid pathway being enhanced by alleles A 1−npe and A 1−npr , respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams R, Hunt M, Clark JH (1940) Structure of cannabidiol, a product isolated from the marihuana extract of Minnesota wild hemp. J Am Chem Soc 62:196–200

    Article  CAS  Google Scholar 

  • Baker PB, Gough TA, Taylor BJ (1980) Illicitly imported Cannabis products: some physical and chemical features indicative of their origin. Bull Narc 32:31–41

    CAS  PubMed  Google Scholar 

  • Baker PB, Gough TA, Taylor BJ (1983) The physical and chemical features of Cannabis plants grown in the United Kingdom of Great Britain and Northern Ireland from seeds of known origin-Part II: second generation studies. Bull Narc 35:51–62

    CAS  PubMed  Google Scholar 

  • Basile A (2014) Understanding the regulating mechanisms behind cannabinoid synthesis. Dissertation, Scuola Superiore Sant’Anna, Pisa

  • Bohlmann F, Hoffmann E (1979) Cannabigerol-ähnliche verbindungen aus Helichrysum umbraculigerum. Phytochemistry 18:1371–1374

    Article  CAS  Google Scholar 

  • Boucher F, Paris M, Cosson L (1977) Mise en évidence de deux types chimiques chez le Cannabis sativa originaire d’Afrique du Sud. Phytochemistry 16:1448–1450

    Article  Google Scholar 

  • De Meijer EPM, Hammond KM (2005) The inheritance of chemical phenotype in Cannabis sativa L. (II): cannabigerol predominant plants. Euphytica 145:189–198

    Article  Google Scholar 

  • De Meijer EPM, Bagatta M, Carboni A, Crucitti P, Moliterni VMC, Ranalli P, Mandolino G (2003) The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163:335–346

    PubMed  PubMed Central  Google Scholar 

  • De Meijer EPM, Hammond KM, Micheler M (2009a) The inheritance of chemical phenotype in Cannabis sativa L. (III): variation in cannabichromene proportion. Euphytica 165:293–311

    Article  CAS  Google Scholar 

  • De Meijer EPM, Hammond KM, Sutton A (2009b) The inheritance of chemical phenotype in Cannabis sativa L. (IV): cannabinoid-free plants. Euphytica 168:95–112

    Article  CAS  Google Scholar 

  • De Petrocellis L, Ligresti A, Schiano Moriello A, Allarà M, Bisogno T, Petrosino S, Stott CG, di Marzo V (2011) Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163:1479–1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Den Nijs APM, Visser DL (1980) Induction of male flowering in gynoecious cucumbers (Cucumis sativus L.) by silver ions. Euphytica 29:273–280

    Article  Google Scholar 

  • Fellermeier M, Zenk MH (1998) Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett 427:283–285

    Article  CAS  PubMed  Google Scholar 

  • Fellermeier M, Eisenreich W, Bacher A, Zenk MH (2001) Biosynthesis of cannabinoids. Incorporation experiments with 13C-labeled glucoses. Eur J Biochem 268:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2008) Secondary metabolism in Cannabis. Phytochem Rev 7:615–639

    Article  CAS  Google Scholar 

  • Flores-Sanchez IJ, Linthorst HJM, Verpoorte R (2010) In silico expression analysis of PKS genes isolated from Cannabis sativa L. Genet Mol Biol 33:703–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE (2012) Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci 109:12811–12816. doi:10.1073/pnas.1200330109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaoni Y, Mechoulam R (1964a) Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    Article  CAS  Google Scholar 

  • Gaoni Y, Mechoulam R (1964b) The structure and synthesis of cannabigerol a new hashish constituent. Proc Chem Soc London, March 1964:82

  • Gaoni Y, Mechoulam R (1966) Cannabichromene, a new active principle in hashish. Chem Commun 1:20–21

    Google Scholar 

  • Harvey DJ (1976) Characterization of the butyl homologues of Δ1-tetrahydrocannabinol, cannabinol and cannabidiol in samples of cannabis by combined gas chromatography and mass spectrometry. J Pharm Pharmacol 28:280–285

    Article  CAS  PubMed  Google Scholar 

  • Isbell H (1973) Research on Cannabis (marihuana). Bull Narc 25:37–48

    Google Scholar 

  • Marks MD, Tian L, Wenger JP, Omburo SN, Soto-Fuentes W, He J, Gang DR, Weiblen GD, Dixon RA (2009) Identification of candidate genes affecting 9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J Exp Bot 60:3715–3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mechoulam R, Shvo Y (1963) Hashish-I, the structure of cannabidiol. Tetrahedron 19:2073–2078

    Article  CAS  Google Scholar 

  • Morimoto S, Komatsu K, Taura F, Shoyama Y (1997) Enzymological evidence for cannabichromenic acid biosynthesis. J Nat Prod 60:854–857

    Article  CAS  Google Scholar 

  • Morimoto S, Komatsu K, Taura F, Shoyama Y (1998) Purification and characterization of cannabichromenic acid synthase from Cannabis sativa. Phytochemistry 49:1525–1529

    Article  CAS  PubMed  Google Scholar 

  • Onofri C, De Meijer EPM, Mandolino G (2015) Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid synthase in Cannabis sativa L. and its relationship with chemical phenotype. Phytochemistry 116:57–68. doi:10.1016/j.phytochem.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  • Page J, Boubakir Z (2011) Aromatic prenyltransferase from Cannabis. World Intellectual Property Organisation, International Publication Number WO 2011/017798 A1

  • Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215

    Article  CAS  PubMed  Google Scholar 

  • Rowan MG, Fairbairn JW (1977) Cannabinoid patterns in seedlings of Cannabis sativa L. and their use in the determination of chemical race. J Pharm Pharmacol 29:491–494

    Article  CAS  PubMed  Google Scholar 

  • Shoyama Y, Yagi M, Nishioka I, Yamauchi T (1975) Biosynthesis of cannabinoid acids. Phytochemistry 14:2189–2192

    Article  CAS  Google Scholar 

  • Shoyama Y, Hirano H, Nishioka I (1984) Biosynthesis of propyl cannabinoid acid and its biosynthetic relationship with pentyl and methyl cannabinoid acids. Phytochemistry 23:1909–1912

    Article  CAS  Google Scholar 

  • Smith RM (1997) Identification of butyl cannabinoids in marijuana. J Forensic Sci 42:610–618

    CAS  Google Scholar 

  • Stout JM, Boubakir Z, Ambrose SJ, Purves RW, Page JE (2012) The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J 71:353–365. doi:10.1111/j.1365-313X.2012.04949.x

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Kurano M, Esumi Y, Yamaguchi I, Doi Y (2003) Biosynthesis of 5-alkylresorcinol in rice: incorporation of a putative fatty acid unit in the 5-alkylresorcinol carbon chain. Bioorg Chem 31:437–452

    Article  CAS  PubMed  Google Scholar 

  • Taura F, Morimoto S, Shoyama Y, Mechoulam R (1995) First direct evidence for the mechanism of delta-1-tetrahydrocannabinolic acid biosynthesis. J Am Chem Soc 38:9766–9767

    Article  Google Scholar 

  • Taura F, Morimoto S, Shoyama Y (1996) Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. J Biol Chem 271:17411–17416

    Article  CAS  PubMed  Google Scholar 

  • Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S (2009) Characterisation of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583:2061–2066

    Article  CAS  PubMed  Google Scholar 

  • Tubaro A, Giangaspero A, Sosa S, Negri R, Grassi G, Casano S, Della Loggia R, Appendino G (2010) Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins. Fitoterapia 81:816–819

    Article  CAS  PubMed  Google Scholar 

  • Turner CE, Hadley K, Fetterman PS (1973) Constituents of Cannabis sativa L. VI: propyl homologs in samples of known geographical origin. J Pharm Sci 62:1739–1741

    Article  CAS  PubMed  Google Scholar 

  • Vree TB, Breimer DD, van Ginneken CAM, van Rossum JM (1971) Identification of the methyl and propyl homologues of CBD, THC and CBN in hashish by a new method of combined gas chromatography-mass spectrometry. Acta Pharm Suec 8:683–684

    Google Scholar 

  • Weiblen GD, Wenger JP, Craft KJ, ElSohly MA, Mehmedic Z, Treiber EL, Marks MD (2015) Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol 208:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Welling MT, Liu L, Shapter T, Raymond CA, King GJ (2016) Characterisation of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica 208:463–475. doi:10.1007/s10681-015-1585-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. M. de Meijer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Meijer, E.P.M., Hammond, K.M. The inheritance of chemical phenotype in Cannabis sativa L. (V): regulation of the propyl-/pentyl cannabinoid ratio, completion of a genetic model. Euphytica 210, 291–307 (2016). https://doi.org/10.1007/s10681-016-1721-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1721-3

Keywords

Navigation