Skip to main content
Log in

The first linkage map for a recombinant inbred line population in cotton (Gossypium barbadense) and its use in studies of PEG-induced dehydration tolerance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Egyptian or Pima cotton (Gossypium barbadense L.) is grown for its superior fiber quality in arid and semiarid region where drought is prevalent. However, its genetic and genomic resources are lacking. The objectives of this study were to develop the first recombinant inbred line (RIL) population for linkage mapping and to identify quantitative trait loci (QTLs) for drought tolerance using candidate gene-based single strand conformation polymorphic (SSCP) markers. Out of 152 primer pairs designed from 92 drought-responsive genes, 80 primer pairs yielded 165 polymorphic markers in the Egyptian RIL population of drought tolerant ‘Dandara’ × drought sensitive ‘Giza-70’. Seedlings of the RILs were evaluated for plant height, fresh shoot weight, fresh root weight, chlorophyll content, evapotranspiration, and leaf temperature in two replicated tests in the greenhouse under 10 % polyethylene glycol (PEG) treatment and control (water) conditions. Significant genotypic differences were detected within the RILs, and all the traits were significantly and positively correlated with one another except between fresh root weight and leaf temperature in one test. Based on a linkage map comprised of 247 loci assembled onto 32 linkage groups, 14 QTLs on 11 chromosomes were detected under the control or PEG conditions, each explaining 14–23.5 % of the phenotypic variation. Three chromosomes each carried two QTLs in the same regions, while 7 QTLs were consistent with previous studies. Out of 25 SSCP-SNP gene markers that were significantly correlated with the traits studied, 17 were commonly correlated with more than one trait. This linkage map represents the first for G. barbadense based on a permanent mapping population, and the candidate gene markers and QTLs reported provide useful information for further studies leading to marker-assisted selection and a better understanding of molecular basis in drought tolerance in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelraheem A, Hughs SE, Jones DC, Zhang JF (2015) Genetic analysis and quantitative trait locus mapping of PEG-induced osmotic stress in cotton. Plant Breed 134:111–120

    Article  CAS  Google Scholar 

  • Abdelraheem A (2006) Genetic analysis of drought tolerance in Egyptian cotton (Gossypium barbadense L.). M.S. thesis, Agronomy Dept, Assiut University, Egypt

  • An C, Saha S, Jenkins JN, Ma DP, Scheffleer BE, Kohel RJ, Yu JZ, Stelly DM (2008) Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping. Theor Appl Genet 116:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • An C, Saha S, Jenkins JN, Scheffler BE, Wilkins TA, Stelly DM (2007) Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton. Mol Genet Genomics 278:539–553

    Article  CAS  PubMed  Google Scholar 

  • Anithakumari AM, Dolstra O, Vosman B, Visser RGF, van der Linden CG (2011) In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica 181:357–369

  • Babar M, Saranga Y, Lgbal Z, Arif M, Zafar Y, Lubbers E, Chee P (2009) Identification of QTLs and impact of selection from various environments (dry vs irrigated) on the genetic relationships among the selected cotton lines from F6 population using a phylogenetic approach. Afr J Biotechnol 8:4802–4810

    CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Benbouza H, Jacquemin JL, Baudoin JP, Mergeai G (2006) Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamidegels. Biotechnol Agron Soc Environ 10:77–81

    CAS  Google Scholar 

  • Berger B, Parent B, Tester M (2010) High-throughput shoot imaging to study drought responses. J Exp Bot 61:3519–3528

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E, Grover A, Good AG (2004) Breeding for abiotic stress resistance: challenges and opportunities. New directions for a diverse planet. In: Proceedings of 4th Int. Crop Sci. Cong., Brisbane, pp 1–15

  • Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience 21:1105–1112

    Google Scholar 

  • Brubaker CL, Bourland FM, Wendel JF (1999) The origin and domestication of cotton. In: Smith CW, Cothren JT (eds) Cotton: origin, history, technology and production. Wiley, New York, pp 3–31

    Google Scholar 

  • Buyyarapu R, Kantety RV, Yu JZ, Saha S, Sharma GC (2011) Development of new candidate gene and EST-based molecular markers for Gossypium species. Int J Plant Genomics 2011:894598

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Byers R, Harker D, Yourstone S, Maughan P, Udall J (2012) Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet 124:1201–1214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Byrne PF, McMullen MD (1996) Defining genes for agriculture traits. QTL analysis and the candidate gene approach. Probe 7:24–27

    Google Scholar 

  • Calhoun DS, Bowman DT, May OL (1994) Pedigrees of Upland and Pima cotton cultivars released between 1970 and 1990. Mississippi State University, Agricultural and Forestry Experiment Station, Bulletin, p 1017

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Liu ZH, Feng L, Zheng Y, Li DD, Li XB (2013) Genome wide functional analysis of cotton (Gossypium hirsutum) in response to drought. PLoS One 8:e80879

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Claeys H, Inze D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curtiss J, Stewart J, Zhang JF (2012) Identification of molecular markers associated with semigamy in cotton. Plant Mol Biol Rep 30:1385–1392

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  CAS  PubMed  Google Scholar 

  • Fryxell PA (1968) A redefinition of tribe Gossypieae. Bot Gazette 129:296–308

    Article  Google Scholar 

  • Fryxell PA (1971) Phenetic analysis and the phylogeny of the diploid species of Gossypium L. (Malvaceae). Evolution 25:554–562

    Article  Google Scholar 

  • Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165

    Google Scholar 

  • Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Vallve S, Palau J, Romeu A (1999) Horizontal gene transfer in glycosy1 hydrolyses inferred from codon usage in Escherichia coli and Bacillus subtilius. Mol Biol Evol 16:1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Gore M, Fang D, Poland JA, Zhang JF, Percy RG, Cantrell RG, Thyssen G (2014) Linkage map construction and QTL analysis of agronomic and fiber quality traits. Plant Genome 7:1–10

    Article  Google Scholar 

  • Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B, Zhang T (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Zhang YX, Li W (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197

    Article  CAS  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savoure A, Jaoua S (2005) Overexpression of d-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752

    Article  CAS  Google Scholar 

  • Hsu CY, An C, Saha S, Ma DP, Jenkins JN, Scheffler B, Stelly DM (2008) Molecular and SNP characterization of two genome specific transcription factor genes GhMyb8 and GhMyb10 in cotton species. Euphytica 159:259–273

    Article  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Okresz l, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    Article  CAS  PubMed  Google Scholar 

  • Jordan GE, Piel WH (2008) PhyloWidget: web-based visualizations for the tree of life. Bioinformatics 24:1641–1642

    Article  CAS  PubMed  Google Scholar 

  • Komulainen P, Brown GR, Mikkonen M, Karhu A, Garcia-Gil MR, O’Malley D, Lee B, Neale DB, Savolainen O (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 107:667–678

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kramer PJ (1983) Water deficits and plant growth. In: Kramer PJ (ed) Water relations of plants. Academic Press, N.Y, pp 342–389

    Chapter  Google Scholar 

  • Kuhn DN, Motamayor JC, Meerow AW, Borrone JW, Schnell RJ (2008) SSCP markers provide a useful alternative to microsatellites in genotyping and estimating genetic diversity in populations and germplasm collections of plant specialty crops. Electrophoresis 29:4096–4108

    Article  CAS  PubMed  Google Scholar 

  • Lacape JM, Jacobs J, Arioli T, Derijcker R, Forestier-Chiron N, Llewellyn D, Jean J, Thomas E, Viot C (2009) A new interspecific, Gossypium hirsutum × G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton. Theor Appl Genet 119:281–292

    Article  CAS  PubMed  Google Scholar 

  • Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Livingstone K, Zou Y, Church SA, Knapp SJ, Andrews J, Rieseberg LH (2005) Identification and mapping of SNPs from ESTs in sunflower. Theor Appl Genet 111:1532–1544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lam HM, Coschigano KT, Oliveria IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular genetics of nitrogen assimilation into amino acid in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  CAS  PubMed  Google Scholar 

  • Larther F, Leport L, Petrivasky M, Chappart M (1993) Effectors for the osmoinduced proline response in higher plants. Plant Physiol Biochem 31:911–922

    Google Scholar 

  • Leidi EO, Lopez M, Gorham J, Gutierrez JC (1999) Variation in carbon isotope discrimination and other traits to drought tolerance in upland cotton cultivars under dryland conditions. Field Crops Res 61:109–123

    Article  Google Scholar 

  • Levi A, Paterson AH, Barak V, Yakir D, Wang B, Chee PW, Saranga Y (2008) Field evaluation of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Mol Breed 23:179–195

    Article  CAS  Google Scholar 

  • Lin Z, Wang Y, Zhang X, Zhang J (2012) Functional markers for cellulose synthase and their comparisons to SSRs in cotton. Plant Mol Biol Rep 30:1270–1275

    Article  CAS  Google Scholar 

  • Liu R, Wang B, Guo W, Wang L, Zhang T (2011) Differential gene expression and associated QTL mapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F-2. Theor Appl Genet 123:439–454

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Curtiss J, Percy RG, Hughs E, Yu JW, Yu SX, Zhang JF (2009) DNA polymorphisms of genes involved in fiber development in a selected set of cultivated tertaploid cotton. Crop Sci 49:1695–1704

    Article  CAS  Google Scholar 

  • Lubbers EL, Chee PW, Saranga Y, Paterson AH (2007) Recent advances and future prospective in molecular breeding of cotton for drought and salinity stress tolerance. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Berlin, pp 775–796

    Chapter  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies: the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Michel BE (1983) Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol 72:66–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nepomuceno A, Stewart JMcD, Oosterhuis DM (1998) Physiological and molecular responses during water deficit in cotton (G. hirsutum L.). In: Proceedings Beltwide Cotton Conf National Cotton Council, Memphis Tenn, pp 1377–1380

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879

    Article  CAS  PubMed  Google Scholar 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2012) Genome wide identification of differentially expressed genes under water deficit stress in Upland cotton (Gossypium hirsutum L.). BMC Plant Biol 12:90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Penna JCV, Verhalen LM, Kirkham MB, McNew RW (1998) Screening cotton genotypes for seedling drought tolerance. Genet Mol Biol 21:545–549

    Article  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Qin HD, Zhang TZ (2008) QTL mapping of leaf chlorophyll content and photosynthetic rates in cotton. Cotton Sci 20:394–398

    Google Scholar 

  • Quisenberry JE, Roark B, McMichael BL (1982) Use of transpiration decline curves to identify drought-tolerant cotton germplasm. Crop Sci 22:918–922

    Article  Google Scholar 

  • Rabbani M, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Youhiwara K, Seki M, Shinozaki K, Yamaguchi K (2003) Monitoring expression profiles of rice genes under cold, drought, and high salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  • Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium-hirsutum × Gossypium barbadense—chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Uribe L, Abdelraheem A, Tiwari R, Sengupta-Gopalan C, Hughs SE, Zhang JF (2014) Identification of drought-responsive genes in a drought-tolerant cotton (Gossypium hirsutum L.) cultivar under reduced irrigation field conditions and development of candidate gene markers for drought tolerance. Mol Breed 34:1777–1796

    Article  CAS  Google Scholar 

  • Rodriguez-Uribe L, Higbie SM, Stewart JM, Wilkins T, Lindemann W, Sengupta-Gopalan C, Zhang JF (2011) Identification of salt responsive genes using microarray analysis un Upland cotton (Gossypium hirsutum L.). Plant Sci 180:461–469

    Article  CAS  PubMed  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson T, Wanamaker SJ, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genomic-wide SNP discovery and linkage analysis in barley based on genes responsive to aboitic stress. Mol Genet Genomics 274:515–527

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of aboitic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on WWW for general users and for biologist programmers. Method Mol Biol 132:365–386

    CAS  Google Scholar 

  • SAS Institue (2000) SAS/STAT user’s guide, version & SAS institute, Cary, NC

  • Saeed M, Guo W, Ullah L, Tabbasam N, Zafar Y, Rahman MU, Zhang T (2011) QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions. Electron J Biotechnol 14:1–13

    Google Scholar 

  • Said JI, Lin ZX, Zhang XL, Song MZ, Zhang JF (2013) A comprehensive QTL meta-analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 14:776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Said JI, Song MZ, Wang H, Lin ZX, Zhang XL, Zhang JF (2014) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics. doi:10.1007/s00438-014-0963-9

  • Salentijn EM, Pereira A, Angenent GC, Van der Linden CG, Krens F, Smulders MJM, Vosman B (2007) Plant translational genomics: from model species to crops. Methods Mol Biol 132:365–386

    Google Scholar 

  • Saranga Y, Jiang CX, Wright RJ, Yakir D, Paterson AH (2004) Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ 27:263–277

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Serrano R, Gulianz-Macia A, Moreno V (1999) Genetic engineering of salt and drought tolerance with yeast regulatory genes. SciHort 78:261–269

    CAS  Google Scholar 

  • Singh D, Kumar A, Kumar A, Chauhan P, Kumar V, Kumar N, Singh A, Mahajan N, Sirohi P, Chand S, Ramesh B, Singh J, Kumar P, Kumar R, Yadav RB, Naresh RK (2011) Marker assisted selection and crop management for salt tolerance: a review. Afr J Biotechnol 10:14694–14698

    CAS  Google Scholar 

  • Smith CW, Cantrell RG, Moser HS, Oakley SR (1999) History of cultivar development in the United States. In: Smith CW, Cothren JT (eds) Cotton: origin, history, technology, and production. Wiley, New York, pp 99–171

    Google Scholar 

  • Song XL, Guo WZ, Han ZG, Zhang TZ (2005) Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. J Integr Plant Biol 47:1382–1390

    Article  CAS  Google Scholar 

  • Song X, Zhang T (2009) Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci 177:317–323

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kishor PBK (2007) Deciphering the regulatory mechanisms of aboitic stress tolerance in plants approaches. Gene 388:1–13

    Article  CAS  PubMed  Google Scholar 

  • Stephens SG (1949) The cytogenetics of speciation in Gossypium. I. selective elimination of the donor parent genotype in interspecific back crosses. Genetics 34:627–637

    PubMed Central  Google Scholar 

  • Tiwari RS (2012) Identification of molecular markers and quantitative trait loci for salt tolerance in a backcross inbred line population of cotton. Ph.D. dissertation, New Mexico State Univ., Las Cruces

  • Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics approaches to improve drought tolerance in crops. Trends Plant Sci 11:405–412

    Article  CAS  PubMed  Google Scholar 

  • Turcotte EL, Percy RG, Feaster CF (1992) Registration of ‘Pima S-7’ American Pima cotton. Crop Sci 32:1291

    Article  Google Scholar 

  • Turner NC, Hearn AB, Begg JE, Constable GA (1986) Cotton (Gossypium hirsutum L.) physiological and morphological responses to water deficts and their relationship to yield. Field Crops Res 14(153):170

    Google Scholar 

  • Van Ooijen JW (2006) JoinMAP 4: software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen

    Google Scholar 

  • Wang X, Yu Y, Sang J, Wu Q, Zhang X, Lin Z (2013) Intraspecific linkage map construction and QTL mapping of yield and fiber quality of Gossypium barbadense. Aust J Crop Sci 7:1252–1261

    Google Scholar 

  • Wendel JF, Brubaker CL, Percival E (1992) Genetic diversity in Gossypium hirsutum and the origin of upland cotton. Am J Bot 79:1291–1310

    Article  Google Scholar 

  • Wendel JF, Cronn C (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Wendel JF (1995) Cotton. In: Simmonds N, Smartt J (eds) Evolution of crop plants. Longman Scientific & Technical, London

    Google Scholar 

  • Wendel JF, Small RL, Cronn, RC, Brubaker CL (1999) Genes, jeans, and genomes: reconstructing the history of cotton. In: van Raamsdonk LWD, den Nijs JCM (eds) Proceedings of the VII international symposium of the international organization of plant biosystematists. Plant evolution in man-made habitats, Hugo de Vries Laboratory, Amsterdam, pp 133–161

  • Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steeel KA (2008) Breeding for aboitic stresses for sustainable agriculture. Philos Trans R Soc Lond B Biol Sci 363:703–716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTL network: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-blast: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134

    Article  CAS  Google Scholar 

  • Yu J, Kohel ZRJ, Fang DD, Cho J, Van Deynze A, Ulloa M, Hoffman SM, Pepper AE, Stelly DM, Jenkins JN, Saha S, Kumpatla SP, Shah MR, Hugie WV, Percy RG (2012) A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. Genes Genomes Genet 2:43–58

    CAS  Google Scholar 

  • Yu J, Yu S, Lu C, Wang W, Fan S, Song M, Lin Z, Zhang X, Zhang JF (2007) High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol 49:716–724

    Article  CAS  Google Scholar 

  • Yu Y, Yuan D, Liang SG, Li XM, Wang XQ, Lin ZX, Zhang XL (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics 12:15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zapata PJ, Botella MA, Pretel MT, Serrango M (2007) Response of ethylene biosynthesis to saline stress in seedlings of eight plant species. Plant Growth Regul 53:97–106

    Article  CAS  Google Scholar 

  • Zhang J, Guo W, Zhang T (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZS, Hu MC, Zhang J, Liu DJ, Zheng J, Zhang K, Wang W, Wan Q (2009b) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61

    Article  CAS  Google Scholar 

  • Zhang L, Li FG, Liu CL, Zhang CJ, Zhang YX (2009a) Construction and analysis of cotton (Gossypium arboreum L.) drought related cDNA library. BMC Res Notes 2:120

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang JF, Lu Y, Adragna H, Hughs E (2005) Genetic improvement of New Mexico Acala cotton germplasm and their genetic diversity. Crop Sci 45:2363–2373

    Article  CAS  Google Scholar 

  • Zhang JF, Percy RG, McCarty JC Jr (2014) Introgression genetics and breeding between Upland and Pima cotton: a review. Euphytica 198:1–12

    Article  Google Scholar 

  • Zhang T, Qian N, Zhu X, Chen H, Wang S, Mei H, Zhang Y (2013) Variations and transmission of QTL alleles for yield and fiber quality in Upland cotton cultivars developed in China. PLoS One 8:e57220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang JF, Stewart JMcD (2000) Economic and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201

    CAS  Google Scholar 

  • Zhang K, Zhang J, Ma J, Tang SY, Liu DJ, Teng ZH, Liu DX, Zhang ZS (2012) Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breed 29:335–348

    Article  Google Scholar 

  • Zhu JK (2001) Plant salt stress. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu M, Zhao S (2007) Candidate gene identification approach: progress and challenges. Int J Biol Sci 3:420–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by New Mexico Agricultural Experiment Station and financial assistance provided by the Egyptian government to A. Abdelraheem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfa Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelraheem, A., Mahdy, E. & Zhang, J. The first linkage map for a recombinant inbred line population in cotton (Gossypium barbadense) and its use in studies of PEG-induced dehydration tolerance. Euphytica 205, 941–958 (2015). https://doi.org/10.1007/s10681-015-1448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1448-6

Keywords

Navigation