Skip to main content

Advertisement

Log in

Singular Spectrum Analytic (SSA) Decomposition and Reconstruction of Flowering: Signatures of Climatic Impacts

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

An empirical approach for the decomposition and reconstruction of long-term flowering records of eight eucalypt species is presented. Results from singular spectrum analysis (SSA) allow for characterisation of the dynamic and complex flowering patterns in response to temperature and rainfall throughout the year. SSA identified trend, annual, biennial and other sub-components of flowering. The ability to discriminate flowering and climate relationships is demonstrated based on SSA (cross-)correlation analysis. SSA also identified the cyclical influence of temperature and rainfall on peak flowering. For each species, there is, on average, 6 months of the annual cycle when temperature positively influences flowering and 6 months when the influence of temperature is negative. For all species, rainfall exerts a negative influence when temperature is positive. Investigation of short-term and long-term lags of climate on flowering provided best-case climatic scenarios for each species’ flowering; e.g. more intense peak flowering is likely in Eucalyptus leucoxylon when cool, wet conditions coincide with peak flowering and is further enhanced if the preceding autumn and winter were warm and dry, and the previous spring and summer cool and wet. Three clear species groupings, according to similar SSA (cross-)correlation signatures, were identified: (1) E. leucoxylon and E. tricarpa; (2) E. camaldulensis, E. melliodora and E. polyanthemos and (3) E. goniocalyx, E. microcarpa and E. macrorhyncha. Lastly, change point years for flowering based on SSA sub-components in four of the species seem to align with years of major shift in global ENSO signal (1951/1957/1958) as indicated by the extended multivariate ENSO index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leith, H. (1974). Purposes of a phenology book. In H. Leith (Ed.), Phenology and seasonality modeling (Ecological Studies: Analysis and Synthesis, Vol. 8, pp. 3–19). New York: Springer-Verlag.

    Chapter  Google Scholar 

  2. Hudson, I. L. (2010). Interdisciplinary approaches: towards new statistical methods for phenological studies. Climatic Change, 100, 143–171.

    Article  Google Scholar 

  3. Dunlop, M., & Brown, P. R. (2008). Implications of climate change for Australia’s National Reserve System: a preliminary assessment. Report to the Department of Climate Change, February 2008., Canberra.

  4. Forrest, J., & Miller-Rushing, A. J. (2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. Proceedings of the Royal Society of London B, 365, 3101–3112.

    Article  Google Scholar 

  5. Thackeray, S. J., Sparks, T. H., Frederiksen, M., Burthe, S., Bacon, P. J., Bell, J. R., et al. (2010). Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology, 16(12), 3304–3313. doi:10.1111/j.1365-2486.2010.02165.x.

    Article  Google Scholar 

  6. van Vliet, A. J. H. (2010). Societal adaptation options to changes in phenology. In I. L. Hudson & M. R. Keatley (Eds.), Phenological research: methods for environmental and climate change analysis (pp. 75–98). Dordrecht: Springer.

    Chapter  Google Scholar 

  7. Ziska, L., & Beggs, P. J. (2012). Anthropogenic climate change and allergen exposure: the role of plant biology. The Journal of Allergy and Clinical Immunology, 129(1), 27–32.

    Article  Google Scholar 

  8. Studer, S., Appenzeller, C., & Defila, C. (2005). Inter-annual variability and decadal trends in Alpine spring phenology: a multivariate approach. Climatic Change, 73(3), 395–414.

    Article  Google Scholar 

  9. Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M., Betancourt, J. L., Travers, S. E., et al. (2012). Warming experiments underpredict plant phenological response to climate change. Nature, 485, 494–497.

    CAS  Google Scholar 

  10. Polansky, L., & Robbins, M. M. (2013). Generalized additive mixed models for disentangling long-term trends, local anomalies, and seasonality in fruit tree phenology. Ecology and Evolution, 3(9), 3141–3151.

    Article  Google Scholar 

  11. Badeck, F. W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J., et al. (2004). Responses of spring phenology to climate change. New Phytologist, 162(2), 295–309.

    Article  Google Scholar 

  12. Hudson, I. L., Keatley, M. R., & Kang, I. (2011). Wavelet signatures of climate and flowering: identification of species groupings. In Discrete Wavelet Transforms. Vienna, Austria: Intech.

    Google Scholar 

  13. Dose, V., & Menzel, A. (2004). Bayesian analysis of climate change impacts in phenology. Global Change Biology, 10, 259–272.

    Article  Google Scholar 

  14. Hudson, I. L., Barnett, A., Keatley, M. R., & Ades, P. K. (2003). Investigation into drivers for flowering: effects of climate on flowering. In G. Verbeke, G. Moelenberghs, M. Aaerts, & S. Fieuws (Eds.), Proceedings of the 18th international workshop on statistical modelling, Katholieke Universiteit Leuven, Belgium (pp. 195–200).

    Google Scholar 

  15. Hudson, I. L., & Keatley, M. R. (Eds.). (2010). Phenological research: methods for environmental and climate change analysis. Dordrecht: Springer.

    Google Scholar 

  16. Hudson, I. L., Keatley, M. R., & Roberts, A. M. I. (2005). Statistical Methods in Phenological Research. Paper presented at the Statistical Solutions to Modern Problems. Proceedings of the 20th International Workshop on Statistical Modelling, Sydney, Australia, July 10-15.

  17. Rybskia, D., Holstena, A., & Kroppa, J. P. (2011). Towards a unified characterization of phenological phases: fluctuations and correlations with temperature. Physica A: Statistical Mechanics and its Applications, 390(4), 680–688.

    Article  Google Scholar 

  18. Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., et al. (2000). Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quaternary Research, 54, 348–358.

    Article  CAS  Google Scholar 

  19. Thomakos, D. D., Wang, T., & Wille, L. T. (2002). ENSO and cholera: modeling daily realized futures volatility with singular spectrum analysis. Physica A: Statistical Mechanics and its Applications, 312(3-4), 505–519.

    Article  Google Scholar 

  20. Hassani, H., & Ghodsi, Z. (2014). Pattern recognition of gene expression with singular spectrum analysis. Medical Sciences, 2(3), 127–139.

    Article  CAS  Google Scholar 

  21. Golyandina, N., & Zhigljavsky, A. (2013). Singular Spectrum Analysis for Time Series (Springer Briefs in Statistics): Springer.

  22. Hassani, H., & Thomakos, D. (2010). A review on singular spectrum analysis for economic and financial time series. Statistics and its interface, 3(3), 377–397.

    Article  Google Scholar 

  23. Amano, T., Freckleton, R. P., Queenborough, S., Doxford, S. W., Smithers, R. J., Sparks, T. H., et al. (2014). Links between plant species’ spatial and temporal responses to a warming climate. Proceedings of the Royal Society of London B, 281, doi:20133017.

  24. Bock, A., Sparks, T. H., Estrella, N., Jee, N., Casebow, A., Schunk, C., et al. (2014). Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey. Global Change Biology, 20, 3508–3519. doi:10.1111/gcb.12579.

    Article  Google Scholar 

  25. Hudson, I. L., Keatley, M. R., & Kang, I. (2011). Wavelet characterization of eucalypt flowering and the influence of climate. Environmental and Ecological Statistics, 18(3), 513–533. doi:10.1007/s10651-010-0149-5.

    Article  Google Scholar 

  26. Prieto, P., Peñuelas, J., Ogaya, R., & Estiarte, M. (2008). Precipitation-dependent flowering of Globularia alypum and Erica multiflora in Mediterranean shrubland under experimental drought and warming, and its inter-annual variability. Annals of Botany, 102, 275–285. doi:10.1093/aob/mcn090.

    Article  Google Scholar 

  27. Butt, N., Pollock, L. J., & McAlpine, C. A. (2013). Eucalypts face increasing climate stress. Ecology and Evolution, 3(15), 5011–5022.

    Article  Google Scholar 

  28. Pollock, L. J., Rosauer, D. F., Thornhill, A. H., Kujala, H., Crisp, M. D., Miller, J. T., et al. (2015). Phylogenetic diversity meets conservation policy: small areas are key to preserving eucalypt lineages. Philosophical Transactions of the Royal Society of London B, 370(1662), 20140007. doi:10.1098/rstb.2014.0007.

    Article  Google Scholar 

  29. Hudson, I. L., & Keatley, M. R. (2010). Singular spectrum analysis: climatic niche identification. In I. L. Hudson & M. R. Keatley (Eds.), Phenological research: methods for environmental and climate change analysis (pp. 393–424). Dordrecht: Springer.

    Chapter  Google Scholar 

  30. Keatley, M. R., & Hudson, I. L. (2007). A comparison of the long-term flowering patterns of Box-Ironbark species in Havelock and Rushworth forests. Environmental Modeling and Assessment, 12, 279–292. doi:10.1007/s10666-006-9063-5.

    Article  Google Scholar 

  31. Golyandina, N., & Korobeynikov, A. (2014). Basic singular spectrum analysis and forecasting with R. Computational Statistics and Data Analysis, 71, 934–954.

    Article  Google Scholar 

  32. Golyandina, N. (2010). On the choice of parameters in singular spectrum analysis and related subspace-based methods. Statistics and its interface, 3(3), 259–279.

    Article  Google Scholar 

  33. Hassani, H. (2007). Singular spectrum analysis: methodology and comparison. Journal of Data Science, 5, 237–257.

    Google Scholar 

  34. Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. (2001). Analysis of time series structure: SSA and related techniques. Boca Raton: Chapman and Hall/CRC.

    Book  Google Scholar 

  35. Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time series analysis: forecasting and control (4th ed.). Hoboken, New Jersey: John Wiley & Sons.

    Book  Google Scholar 

  36. Shumway, R. H., & Stoffer, D. S. (2011). Time series analysis and its applications: with R examples. (3rd ed., Springer texts in Statistics). New York: Springer.

  37. R Development Core Team (2013). R: A Language and Environment for Statistical Computing. http://www.R-project.org/. Accessed http://www.R-project.org.

  38. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  39. Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, 21(2), 203–217.

    Google Scholar 

  40. Wolter, K., & Timlin, M. S. (2011). El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). International Journal of Climatology, 31, 1074–1087.

    Article  Google Scholar 

  41. Beuhne, F. R. (1922). The honey flora of Victoria. Melbourne: Department of Agriculture.

    Google Scholar 

  42. Rayment, T. (1916). Money in bees in Australasia. A practical treatise on the profitable management of the Honey Bee in Australasia. Melbourne: Whitcombe and Tombs Ltd.

    Book  Google Scholar 

  43. Wells, K. (2000). Long term cyclic and environmentally induced effects on flowering of four box-ironbark eucalypts (School of Forestry). Parkville: University of Melbourne.

    Google Scholar 

  44. Somerville, D. (1999). Floral Resource Database for the NSW Apiary Industry. Kingston: Project number DAN 155A, RIRDC Publication No. 99/174.

  45. van den Berghy, F., Holloway, J. P., Pienaar, M., Koenz, R., Elphinstone, C. D., & Woodborne, S. (2006). A comparison of various modelling approaches applied to Cholera case data. ORiON, 24(1), 17–36.

    Google Scholar 

  46. Hudson, I. L., Keatley, M. R., & Lee, S. Y. (2011). Using Self-Organising Maps (SOMs) to assess synchronies: an application to historical eucalypt flowering records. International Journal of Biometeorology, 55(6), 879–904. doi:10.1007/s00484-011-0427-4.

    Article  Google Scholar 

  47. Hudson, I. L., Kim, S. W., & Keatley, M. R. (2011). Climate effects and temperature thresholds for Eucalypt flowering: a GAMLSS ZIP approach. Paper presented at the MODSIM2011, 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, Perth Convention and Exhibition Centre in Perth, Western Australia, December 12-16.

  48. Rawal, D. S., Kasel, S., Keatley, M. R., & Nitschke, C. R. (2015). Herbarium records identify sensitivity of flowering phenology of eucalypts to climate: implications for species response to climate change. Austral Ecology, 40, 117–125. doi:10.1111/aec.12183.

    Article  Google Scholar 

  49. Keatley, M. R. (1999). The Flowering Phenology of Box-Ironbark Eucalypts in the Maryborough Region, Victoria. Ph.D, The University of Melbourne.

  50. Porter, J. W. (1978). Relationships between flowering and honey production of Red Ironbark, Eucalyptus sideroxylon (A. Cunn.) Benth., and climate in the Bendigo district of Victoria. Australian Journal of Agricultural Research, 29, 815–829.

    Article  Google Scholar 

  51. Hudson, I. L., Kim, S. W., & Keatley, M. R. Modelling lagged dependency of current and past climate on flowering: mixture transition state approach. In Climate and Society: 19th International Congress of Biometeorology, December 4th-8th The University of Auckland, New Zealand, 2011 (Vol. ISBN 978-0-86869-132).

  52. Fitter, A. H. (1995). Interpreting quantitative and qualitative characteristics in comparative analyses. Journal of Ecology, 83, 730.

    Article  Google Scholar 

  53. Sparks, T. H., & Carey, P. D. (1995). The responses of species to climate over two centuries: an analysis of the Marshman phenological record, 1736-1947. Journal of Ecology, 83, 321–329.

    Article  Google Scholar 

  54. Roberts, A. M. I. (2008). Exploring relationships between phenological and weather data using smoothing. International Journal of Biometeorology, 52, 463–470. doi:10.1007/s00484-007-0141-4.

    Article  Google Scholar 

  55. Hudson, I. L., Keatley, M. R., & Kang, I. (2011). Wavelets and clustering: methods to assess synchronization. In M. Valle, R. Munoz, & J. M. Gutiérrez (Eds.), Wavelets: Classification, theory and applications (pp. 97-124): Nova Science Publishers.

  56. Yang, S., Logan, J., & Coffey, D. L. (1995). Mathematical formulae for calculating the base temperature for growing degree days. Agricultural and Forest Meteorology, 74, 61–74.

    Article  Google Scholar 

  57. House, S. M. (1997). Reproductive biology of eucalypts. In J. E. Williams & J. Woinarski (Eds.), Eucalypt ecology: individuals to ecosystems (pp. 30–55). Cambridge: Cambridge University Press.

    Google Scholar 

  58. Keatley, M. R., & Hudson, I. L. (1998). The influence of fruit and bud volumes on Eucalypt flowering: an exploratory analysis. Australian Journal of Botany, 46(2), 281–304.

    Article  Google Scholar 

  59. Primack, R. B. (1987). Relationship among flowers, fruits and seeds. Annual Review of Ecology and Systematics, 18, 409–430.

    Article  Google Scholar 

  60. Post, E., Pedersen, C., Wilmers, C. C., & Forchhammer, M. C. (2008). Phenological sequences reveal aggregate life history response to climatic warming. Ecology, 89(2), 363–370.

    Article  Google Scholar 

  61. Hudson, I. L., & Keatley, M. R. (2013). Scoping the budding and climate impacts on Eucalypt flowering: nonlinear time series decomposition modelling. Paper presented at the Adapting to Change: the multiple roles of modelling. MODSIM2013, 20th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, Adelaide, South Australia, December 1-6.

  62. Semple, W. S., & Koen, T. B. (2010). Reproductive Phenology of White Box (Eucalyptus albens Benth.) in the Southern Portion of its Range: 1997 to 2007. Proceeding of the Linnean Society of New South Wales, 131, 93–110.

    Google Scholar 

  63. Dooley, G. M., Murray, M. D., Lutze, M. T., McCarthy, G. J., Perry, P. C., & Fagg, P. C. (2010). Seedcrop development in Eucalyptus viminalis in High-Elevation Mixed Species forest of East Gippsland. Austalian Forestry, 73(1).

  64. Law, B., Mackowski, L., & Tweedie, T. (2000). Flowering phenology of myrtaceous trees and their relation to climate, environmental and disturbance variables in northern New South Wales. Austral Ecology, 25, 160–178.

    Article  Google Scholar 

  65. Murray, M. D., & Lutze, M. T. (2004). Seedcrop development in Eucalyptus obliqua and Eucalyptus cypellocarpa in High elevation Mixed Species forests of East Gippsland. (Vol. Research Report 387). Orbost: Forest Science Centre.

  66. Bassett, O. D. (2002). Flowering and seed crop development in Eucalyptus sieberi L. Johnson and E. globoidea Blakely in a lowland sclerophyll forest in East Gippsland, Victoria. Australian Forestry, 65(4), 237–254.

    Article  Google Scholar 

  67. Paton, D. C. (2008). Securing long-term floral resources for the honeybee industry. (pp. 41). ACT: Rural Industries Research and Development Corporation.

  68. Bozzo, E., Carniel, R., & Fasino, D. (2010). Relationship between singular spectrum analysis and Fourier analysis: theory and application to the monitoring of volcanic activity. Computers and Mathematics with Applications, 60(3), 812–820.

    Article  Google Scholar 

  69. Zhigljavsky, A. (2010). Singular spectrum analysis for time series: introduction to this special issue. Statistics and its interface, 3, 255–258.

    Article  Google Scholar 

  70. Golyandina, N., & Osipov, E. (2007). The “Caterpillar”—SSA method for analysis of time series with missing values. Journal of Statistical Planning and Inference, 137(8), 2642–2653. doi:10.1016/j.jspi.2006.05.014.

    Article  Google Scholar 

  71. Kondrashov, D., & Ghil, M. (2006). Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Processes in Geophysics, 13(2), 151–159.

    Article  Google Scholar 

  72. Kondrashov, D., & Ghil, M. (2007). Reply to T. Schneider’s comment on “Spatio-temporal filling of missing points in geophysical data sets”. Nonlinear Processes in Geophysics, 14(1), 3–4.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the former Forest Commission Officers who undertook the observations and the two referees whose comments improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene L. Hudson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudson, I.L., Keatley, M.R. Singular Spectrum Analytic (SSA) Decomposition and Reconstruction of Flowering: Signatures of Climatic Impacts. Environ Model Assess 22, 37–52 (2017). https://doi.org/10.1007/s10666-016-9516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9516-4

Keywords

Navigation