Skip to main content
Log in

An Alternative Process Model of Preferential Contaminant Travel Times in the Unsaturated Zone: Application to Rainier Mesa and Shoshone Mountain, Nevada

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Simulating contaminant transport in unsaturated zones with sparse hydraulic property information is a difficult, yet common, problem. When contaminant transport may occur via preferential flow, simple modeling approaches can provide predictions of interest, such as the first arrival of contaminant, with minimal site characterization. The conceptual model for unsaturated zone flow at Rainier Mesa and Shoshone Mountain, Nevada National Security Site, establishes the possibility of preferential flow through lithologies between potential radionuclide sources and the saturated zone. After identifying preferential flow as a possible contaminant transport process, we apply a simple model to estimate first arrival times for conservatively transported radionuclides to reach the saturated zone. Simulated preferential flow travel times at Rainier Mesa are tens to hundreds of years for non-ponded water sources and 1 to 2 months for continuously ponded water sources; first arrival times are approximately twice as long at Shoshone Mountain. These first arrival time results should then be viewed as a worst-case scenario but not necessarily as a timescale for a groundwater-contamination hazard, because concentrations may be very low. The alternative approach demonstrated here for estimating travel times can be useful in situations where predictions are needed by managers for the fastest arrival of contaminants, yet budgetary or time constraints preclude more rigorous analysis, and when additional model estimates are needed for comparison (i.e., model abstraction).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allshorn, S. J. L., Bottrell, S. H., West, L. J., & Odling, N. E. (2007). Rapid karstic bypass flow in the unsaturated zone of the Yorkshire chalk aquifer and implications for contaminant transport (p. 279). London: Geological Society, Special Publications v.

    Google Scholar 

  2. Amy, P. S., Haldeman, D. L., Ringelberg, D., Hall, D. H., & Russell, C. E. (1992). Comparison of identification systems for classification of bacteria isolated from water and endolithic habitats within the deep subsurface. Applied and Environmental Microbiology, 58, 3367–3373.

    CAS  Google Scholar 

  3. Baker, R. S., & Hillel, D. (1990). Laboratory tests of a theory of fingering during infiltration into layered soils. Soil Science Society of America Journal, 54, 20–30.

    Article  Google Scholar 

  4. Bakalowicz, M. J., & Jusserand, C. (1987). Etude del’infiltration en milieu karstique par les methods géochimiques et isotopiques. Cas de la Grotte de Niaux (Ariege, France). Bulletin Centre d’Hydrogeologie, Univ. Neuchatel, 7, 265–283.

    Google Scholar 

  5. Bauters, T. W. J., Dicarlo, D. A., Steenhuis, T. S., & Parlange, J.-Y. (2000). Soil water content dependent wetting front characteristics in sands. Journal of Hydrology, 231–232, 244–254.

    Article  Google Scholar 

  6. Bechtel Nevada (2006). Completion report for well ER-12-3, corrective action unit 99: Rainier Mesa–Shoshone Mountain. Oak Ridge, Tennessee: U.S. Department of Energy, U.S. Department of Energy Report DOE/NV/11718—1182, 115 pp.

  7. Borg, I. Y., Stone, R., Levy, H. B., & Ramspott, L. D. (1976). Information pertinent to the migration of radionuclides in groundwater at the Nevada Test Site. Livermore, California: Lawrence Livermore Laboratory, Lawrence Livermore Laboratory Report UCRL-52078, Part 1: review and analysis of existing information, 216 pp.

  8. Brouyère, S., Dassargue, A., & Hallet, V. (2004). Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: A field investigation. Journal of Contaminant Hydrology, 72, 135–164.

    Article  Google Scholar 

  9. Cey, E. E., & Rudolph, D. L. (2009). Field study of macropore flow processes using tension infiltration of a dye tracer in partially saturated soils. Hydrologic Processes, 23, 1768–1779.

    Article  Google Scholar 

  10. Chappell, N. A., & Sherlock, M. D. (2005). Contrasting flow pathways within tropical forest slopes of Ultisol soils. Earth Surface Processes and Landforms, 30, 735–753.

    Article  Google Scholar 

  11. Chapman, J. B., Ingraham, N. L., & Hess, J. W. (1992). Isotopic investigation of infiltration and unsaturated zone flow processes at Carlsbad Caverns, New Mexico. Journal of Hydrology, 133, 343–363.

    Article  CAS  Google Scholar 

  12. Clebsch, A. J. (1960). Ground water in the Oak Spring Formation and hydrologic effects of underground nuclear explosions at the Nevada Test Site. U.S. Geological Survey, Open-File Report 60-27, 29 pp.

  13. Clebsch, A. J. & Barker, F. B. (1960). Analyses of ground water from Rainier Mesa, Nevada Test Site, Nye County, Nevada. U.S. Geological Survey, Open File-Report 60-28, 23 pp.

  14. Davis, P. K. & Bigelow, J. H. (2003). Motivated metamodels; synthesis of cause-effect reasoning and statistical metamodeling. RAND Corporation Report MR-1570, 78 pp.

  15. Department of Energy (1997). Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada. Las Vegas, Nevada: DOE Nevada Operations Office, U.S. Department of Energy Report DOE/NV—477, 396 pp.

  16. Department of Energy (2000). United States nuclear tests July 1945 through September 1992. Las Vegas, Nevada: U.S. Department of Energy, U.S. Department of Energy Report DOE/NV--209-REV 15, 185 pp.

  17. Dickey, D. D., Emerick, W. L., & Bunker, C. M. (1962). Interim geological investigations in the U12b.09 and U12b.07 tunnels, Nevada Test Site, Nye County, Nevada. U.S. Geological Survey, Open-File Report 62-37, 64 pp.

  18. Diment, W. H., Wilmarth, V. R., McKeown, F. A., Dickey, D. D., Hinrichs, E. N., Botinelly, T., Roach, C. H., Byers, F. M. J, Hawley, C. C., Izett, G. A., & Clebsch, A. J. (1959). Geological survey investigations in the U12b.03 and U12b.04 tunnels, Nevada Test Site. Washington, D.C.: U.S. Geological Survey, Open-File Report 59-36, 75 pp.

  19. Dubois, J. -D. (1991). Typologie des aquiferes du cristallin: Exemple des massifs des aiguilles rouges et du Mont-Blanc (France, Italie et Suisse). Lausanne, Switzerland: Ecole Polytechnique Federale De Lausanne, Ph. D. Dissertation, 352 pp.

  20. Ebel, B. A. & Nimmo, J. R. (2009). Estimation of unsaturated zone travel times for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model. U.S. Geological Survey, Open-File Report 2009–1175, 74 pp.

  21. Ebel, B. A. & Nimmo, J. R. (2010). Hydraulic property and soil textural classification measurements for Rainier Mesa, Nevada Test Site, Nevada. U.S. Geological Survey, Open-File Report 2009-1264, 17 pp.

  22. Evans, C. D., Norris, D., Ostle, N., Grant, H., Rowe, E. C., Curtis, C. J., & Reynolds, B. (2008). Rapid immobilisation and leaching of wet-deposited nitrate in upland organic soils. Environmental Pollution, 156, 636–643.

    Article  CAS  Google Scholar 

  23. Fenelon, J. M. (2006). Database of ground-water levels in the vicinity of Rainier Mesa, Nevada Test Site, Nye County, Nevada 1957-2005. U.S. Geological Survey, Data Series 190, 14 pp.

  24. Fenelon, J. M., Laczniak, R. J., & Halford, K. J. (2008). Predevelopment water-level contours for aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada. U.S. Geological Survey, Scientific Investigations Report 2008-5044, 38 pp.

  25. Fernandez, J. A. & Freshley, M. D. (1984). Repository sealing concepts for the Nevada nuclear waste storage investigations project, Sandia National Labs, Albuquerque, New Mexico. Sandia National Labs Report SAND--83-1778, 91 pp.

  26. Fishwick, P. A. (1995). Simulation model design and execution (p. 432). Englewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  27. Flury, M., Flühler, H., Jury, W. A., & Leuenberger, J. (1994). Susceptibility of soils to preferential flow of water: A field study. Water Resources Research, 30, 1945–1954.

    Article  Google Scholar 

  28. Gauthier, J. H. (1998). Modeling unsaturated-zone flow at Rainier Mesa as a possible analog for a future Yucca Mountain. Albuquerque, New Mexico: Sandia National Laboratories, Sandia National Laboratories Report SAND97-2743C, 3 pp.

  29. Gerke, H. H. (2006). Preferential flow descriptions for structured soils. Journal of Plant Nutrition and Soil Science, 169, 382–400.

    Article  CAS  Google Scholar 

  30. Gjettermann, B., Nielsen, K. L., Petersen, C. T., Jensen, H. E., & Hansen, S. (1997). Preferential flow in sandy loam soils as affected by irrigation intensity. Soil Technology, 11, 139–152.

    Article  Google Scholar 

  31. Gjettermann, B., Hansen, H. C. B., Jensen, H. E., & Hansen, S. (2004). Transport of phosphate through artificial macropores during film and pulse flow. Journal of Environmental Quality, 33, 2263–2271.

    Article  CAS  Google Scholar 

  32. Glass, R. J., Steenhuis, T. S., & Parlange, J. Y. (1988). Wetting front instability as a rapid and far-reaching hydrologic process in the Vadose zone. Journal of Contaminant Hydrology, 3, 207–226.

    Article  Google Scholar 

  33. Glass, R. J., Parlange, J.-Y., & Steenhuis, T. S. (1989). Wetting front instability, 1. Theoretical discussion and dimensional analysis. Water Resources Research, 25, 1187–1194.

    Article  CAS  Google Scholar 

  34. Guell, M. A., & Hunt, J. R. (2003). Groundwater transport of tritium and krypton-85 from a nuclear detonation cavity. Water Resources Research, 39, 1175. doi:doi:10.1029/2001WR001249.

    Article  Google Scholar 

  35. Haldeman, D. L., Amy, P. S., Ringelberg, D., & White, D. C. (1993). Characterization of the microbiology within a 21 m3 section of rock from the deep subsurface. Microbial Ecology, 26, 145–159.

    Article  Google Scholar 

  36. Hamdi, M., Durnford, D., & Loftis, J. (1994). Bromide transport under sprinkler and ponded irrigation. Journal of Irrigation and Drainage Engineering, 120, 1086–1097.

    Article  Google Scholar 

  37. Hansen, W. R., Lemke, R. W., Cattermole, J. M., & Gibbons, A. B. (1963). Stratigraphy and structure of the Rainier and USGS tunnel areas, Nevada Test Site. U.S. Geological Survey, Professional Paper 382-A, 47 pp.

  38. Hendrickx, J. M. H., Dekker, L. W., & Boersma, O. H. (1993). Unstable wetting fronts in water-repellent soils. Journal of Environmental Quality, 22, 109–118.

    Article  CAS  Google Scholar 

  39. Hevesi, J. A., Flint, A. L., & Istok, J. D. (1992). Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: Isohyetal maps. Journal of Applied Meteorology, 31, 677–688.

    Article  Google Scholar 

  40. Hillel, D., & Baker, R. S. (1988). A descriptive theory of fingering during infiltration into layered soils. Soil Science, 146, 51–56.

    Article  Google Scholar 

  41. Hoover, D. L. & Magner, J. E. (1990). Geology of the Rainier Mesa-Aqueduct Mesa tunnel areas-U12n tunnel. U.S. Geological Survey, Open-File Report 90-623, 49 pp.

  42. Jacobson, R. L., Henne, M. S., & Hess, J. W. (1986). A reconnaissance investigation of hydrogeochemistry and hydrology of Rainier Mesa. Reno, Nevada: Desert Research Institute, Water Resources Center Publication No. 45046, DOE/NV/10384-05, 57 pp.

  43. Jarvis, P. G. (1993). Prospects for bottom-up models. In J. R. Ehleringer & C. B. Field (Eds.), Scaling physiological processes: Leaf to globe (pp. 115–126). San Diego: Academic Press.

    Chapter  Google Scholar 

  44. Johannesson, K. H., Stetzenbach, K. J., Hodge, V. F., Kreamer, D. K., & Zhou, X. (1997). Delineation of groundwater flow systems in the southern Great Basin using aqueous rare earth element distributions. Ground Water, 35, 807–819.

    Article  CAS  Google Scholar 

  45. Johannesson, K. H., Zhou, X., Guo, C., Stetzenbach, K. J., & Hodge, V. F. (2000). Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern California, USA. Chemical Geology, 164, 239–257.

    Article  CAS  Google Scholar 

  46. Kasteel, R. (1997). Solute transport in an unsaturated field soil: Describing heterogeneous flow fields using spatial distribution of hydraulic properties. Zurich, Switzerland: ETH Zurich, Ph.D. thesis, 108 pp.

  47. Klemeš, V. (1983). Conceptualization and scale in hydrology. Journal of Hydrology, 65, 1–23.

    Article  Google Scholar 

  48. Kersting, A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K., & Thompson, J. L. (1999). Migration of plutonium in ground water at the Nevada Test Site. Nature, 397, 56–59.

    Article  CAS  Google Scholar 

  49. Kung, K.-J. S. (1990). Preferential flow in a sandy Vadose zone, 1, field observation. Geoderma, 46, 51–58.

    Article  Google Scholar 

  50. Kung, K.-J. S. (1990). Preferential flow in a sandy Vadose zone, 2, mechanism and implications. Geoderma, 46, 59–71.

    Article  Google Scholar 

  51. Kung, K.-J. S. (1993). Laboratory observation of funnel flow mechanism and its influence on solute transport. Journal of Environmental Quality, 22, 91–102.

    Article  CAS  Google Scholar 

  52. Laczniak, R. J., Cole, J. C., Sawyer, D. A., & Trudeau, D. A. (1996). Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada. U.S. Geological Survey, Water-Resources Investigations Report 96-4109, 59 pp.

  53. Lawrence Livermore National Laboratory (2006). Isotopic analyses: Environmental monitoring well ER-12-4. Livermore, California: Lawrence Livermore National Laboratory, unpublished report, 5 pp.

  54. Lawrence Livermore National Laboratory (2007). Isotopic analyses: Environmental monitoring well ER-12-4. Livermore, California: Lawrence Livermore National Laboratory, unpublished report, 5 pp.

  55. Legout, C., Molenat, J., Aquilina, L., Gascuel-Odoux, C., Faucheux, M., Fauvel, Y., & Bariac, T. (2007). Solute transfer in the unsaturated zone-groundwater continuum of a headwater catchment. Journal of Hydrology, 332, 427–441.

    Article  Google Scholar 

  56. Maxwell, R. M. (2010). Infiltration in arid environments: Spatial patterns between subsurface heterogeneity and water-energy balances. Vadose Zone J., 9, 1–14. doi:10.2136/vzj2010.0014.

    Article  Google Scholar 

  57. National Nuclear Security Administration NTSO (2004). Corrective action investigation plan for corrective action unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada. Las Vegas, Nevada: Stoller-Navarro Joint Venture, U.S. Department of Energy Report DOE/NV--1031, revision no. 0. 320 pp.

  58. National Oceanic and Atmospheric Administration (2006). Overview of the climate of the Nevada Test Site (NTS), National Oceanic and Atmospheric Administration, Air Resources Laboratory—Special Operation and Research Division.

  59. National Security Technologies, LLC (2007). A hydrostratigraphic model and alternatives for the groundwater flow and contaminant transport model of corrective action unit 99: Rainier Mesa-Shoshone Mountain, Nye County, Nevada. Las Vegas, Nevada: U.S. Department of Energy, U.S. Department of Energy Report DOE/NV/25946—146, 302 pp.

  60. National Security Technologies, LLC (2008). Nevada Test Site environmental report 2007. In: C. Wills (ed.), U.S. Department of Energy Report DOE/NV/25946--543. Las Vegas, Nevada: National Security Technologies, 319 pp.

  61. Nativ, R., Adar, E., Dahan, O., & Geyh, M. (1995). Water recharge and solute transport through the Vadose zone of fractured chalk under desert conditions. Water Resources Research, 31, 253–261.

    Article  CAS  Google Scholar 

  62. Neuman, S.P. & Wierenga, P.J., (2003). A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. Washington, D. C.: U.S. Nuclear Regulatory Commission, NUREG/CR-6805.

  63. Nichol, C., Smith, L., & Beckie, R. (2005). Field-scale experiments of unsaturated flow and solute transport in a heterogeneous porous medium. Water Resources Research, 41, W05018.

    Article  Google Scholar 

  64. Nimmo, J. R. (2007). Simple predictions of maximum transport rate in unsaturated soil and rock. Water Resources Research, 43, W05426.

    Article  Google Scholar 

  65. Nitao, J. J., & Buscheck, T. A. (1991). Infiltration of a liquid front in an unsaturated, fractured porous medium. Water Resources Research, 27, 2099–2112.

    Article  Google Scholar 

  66. Norris, A. (1989). The use of chlorine isotope measurements to trace water movements at Yucca Mountain. In: Nuclear waste isolation in the unsaturated zone (p. 7). Las Vegas: FOCUS`89.

    Google Scholar 

  67. Pachepsky, Y. A., Guber, A. K., Van Genuchten, M. T., Nicholson, T. J., Cady, R. E., Šimunek, J., & Schaap, M. G. (2006). Model abstraction techniques for soil water flow and transport. Washington, D.C.: Nuclear Regulatory Commission, NUREG CR-6884, 175 pp.

  68. Parashar, R. & Reeves, D. M. (2008). Upscaling fracture properties in support of dual-permeability simulations. Eos Trans. AGU, Fall Meet. Suppl., Abstract H41A-0847.

  69. Plume, R. W. (1996). Hydrogeologic framework of the Great Basin region of Nevada, Utah, and adjacent states. Reston, VA: U.S. Geological Survey, Professional Paper 1409-B, 64 pp.

  70. Pruess, K. (1998). On water seepage and fast preferential flow in heterogeneous, unsaturated rock fractures. Journal of Contaminant Hydrology, 30, 333–362.

    Article  CAS  Google Scholar 

  71. Pruess, K. (1999). A mechanistic model for water seepage through thick unsaturated zones in fractured rocks of low matrix permeability. Water Resources Research, 1039-1051.

  72. Pruess, K., Faybishenko, B., & Bodvarsson, G. S. (1999). Alternative concepts and approaches for modeling flow and transport in thick unsaturated zones of fractured rocks. Journal of Contaminant Hydrology, 38, 281–322.

    Article  CAS  Google Scholar 

  73. Reeves, D. M., Schultz, R., Bingham, C., Pohlmann, K., Russell, C. E., & Chapman, J. (2007). Characterization of preferential flowpaths at the T tunnel complex, Rainier Mesa, Nevada. Eos Trans. AGU, Fall Meet. Suppl., Abstract H33H-1721.

  74. Refsgaard, J. C., van der Sluijs, J. P., Brown, J., & van der Keur, P. (2006). A framework for dealing with uncertainty due to model structure error. Advances in Water Resources, 29(11), 1586–1597.

    Article  Google Scholar 

  75. Russell, C. E. (1987). Hydrogeologic investigations of flow in fractured tuffs, Rainier Mesa, Nevada Test Site. Las Vegas, Nevada: MS thesis, University of Nevada.

    Google Scholar 

  76. Russell, C. E. & Minor, T. (2002). Reconnaissance estimates of recharge based on an elevation-dependent chloride mass-balance approach. Reno, Nevada: Desert Research Institute, Publication Number 45164, DOE/NV/11508-37, 66 pp.

  77. Russell, C. E., Gillespie, L., & Gillespie, D. (1993). Geochemical and hydrologic characterization of the effluent draining from U12e, U12n, and U12t tunnels, area 12, Nevada Test Site. Las Vegas, Nevada; Reno, Nevada: Desert Research Institute, Desert Research Institute Report 45105, 193 pp.

  78. Russell, C. E., Hess, J. W., & Tyler, S. W. (2001). Hydrogeologic investigations of flow in fractured tuffs, in: Flow and transport through unsaturated fractured rock Rainier Mesa, Nevada Test Site. In D. D. Evans, T. J. Nicholson, & T. C. Rasmussen (Eds.), Flow and transport through unsaturated fractured rock (pp. 105–112). Washington, D.C.: American Geophysical Union.

    Chapter  Google Scholar 

  79. Russell, C E, French, R H, Nicholson, R A, Miller, J S, & Benner S (2003). Evaluation of monitoring data from impounded water within U12n and U12t tunnel—Rainier and Aqueduct Mesas, Nevada Test Site. Reno, NV: Desert Research Institute, Letter Report, unpublished report.

  80. Scanlon, B. R., & Goldsmith, R. S. (1997). Field study of spatial variability in unsaturated flow beneath and adjacent to playas. Water Resources Research, 33, 2239–2252.

    Article  CAS  Google Scholar 

  81. Seiler, K.-P., von Loewenstern, S., & Schneider, S. (2002). Matrix and bypass-flow in quaternary and tertiary sediments of agricultural areas in south Germany. Geoderma, 105, 299–306.

    Article  CAS  Google Scholar 

  82. Selker, J. S., Steenhuis, T. S., & Parlange, J. Y. (1992). Fingered flow in two dimensions: 2. Predicting finger moisture profile. Water Resources Research, 28, 2523–2528.

    Article  Google Scholar 

  83. Sivapalan, S. (2003). Process complexity at hillslope scale, process simplicity at the watershed scale: Is there a consensus? Hydrological Processes, 17, 1037–1042.

    Article  Google Scholar 

  84. Sivapalan, M., Blöschl, G., Zhang, L., & Vertessy, R. (2003). Downward approach to hydrological prediction. Hydrological Processes, 17, 2101–2111.

    Article  Google Scholar 

  85. Smith, D. K., Finnegan, D. L., & Bowen, S. M. (2003). An inventory of long-lived radionuclides residual from underground nuclear testing at the Nevada Test Site, 1951–1992. Journal of Environmental Radioactivity, 67, 35–51.

    Article  CAS  Google Scholar 

  86. Stetzenbach, K. J., Hodge, V. F., Guo, C., Farnham, I. M., & Johannesson, K. H. (2001). Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Nevada, USA. Journal of Hydrology, 243, 254–271.

    Article  CAS  Google Scholar 

  87. Stoller-Navarro Joint Venture (2006a). Completion report for well ER-12-4, corrective action unit 99: Rainier Mesa–Shoshone Mountain. Las Vegas, Nevada: U.S. Department of Energy, U.S. Department of Energy Report DOE/NV—1208, 111 pp.

  88. Stoller-Navarro Joint Venture (2006b). Completion report for well ER-16-1, corrective action unit 99: Rainier Mesa–Shoshone Mountain. Las Vegas, Nevada: U.S. Department of Energy, U.S. Department of Energy DOE/NV—1180, 117 pp.

  89. Stoller-Navarro Joint Venture (2006c). Analysis of FY 2005/2006 hydrologic testing and sampling results for well ER-12-4, Nevada Test Site, Nye County, Nevada. Las Vegas, Nevada: Stoller-Navarro Joint Venture, U.S. Department of Energy S-N/99205--083, 98 pp.

  90. Stoller-Navarro Joint Venture (2008a). Phase I hydrologic data for the groundwater flow and contaminant transport model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada. Las Vegas, Nevada: Stoller-Navarro Joint Venture, U.S. Department of Energy S-N/99205—103, 166 pp.

  91. Stoller-Navarro Joint Venture (2008b). Modeling approach/strategy for corrective action unit 99: Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1, with ROTC-1. Las Vegas, Nevada: Stoller-Navarro Joint Venture, U.S. Department of Energy S-N/99205--106, 104 pp.

  92. Stormont, J. C., & Anderson, C. E. (1999). Capillary barrier effect from underlying coarser soil layer. Journal of Geotechnical and Geoenvironmental Engineering, 125, 641–648.

    Article  Google Scholar 

  93. Sweetkind, D. & Drake, R. M. (2007). Characteristics of fault zones in volcanic rocks near Yucca Flat, Nevada Test Site, Nevada. U.S. Geological Survey, Open-File Report 2007-1293, 52 pp.

  94. Sweetkind, D. S., Knochenmus, L. A., Ponce, D. A., Wallace, A. R., Scheirer, D. S., Watt, J. T., & Plume, R. W. (2007). Water resources of the basin and range carbonate–rock aquifer system, White Pine County, Nevada, and adjacent areas in Nevada and Utah (pp. 2007–5261). Reston, VA: U.S. Geological Survey, Scientific Investigations Report.

    Google Scholar 

  95. Thordarson, W. (1965). Perched groundwater in zeolitized–bedded tuff, Rainier Mesa and vicinity, Nevada Test Site, Nevada. U.S. Geological Survey, Open-File Report 66-130, 94 pp.

  96. Tsuboyama, Y., Sidle, R. C., Noguchi, S., & Hosoda, I. (1994). Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resources Research, 30, 879–889.

    Article  CAS  Google Scholar 

  97. Uhlenbrook, S., & Leibundgut, C. (1997). Investigation of preferential flow in the unsaturated zone using artificial tracer. In A. Kranjc (Ed.), Tracer hydrology (181–188). Rotterdam: A. A. Balkema.

    Google Scholar 

  98. U.S. Congress, Office of Technology Assessment (1989). The containment of nuclear explosions. Washington, D.C.: U.S Government Printing Office, OTA-ISC-414.

  99. Vincenzi, V., Gargini, A., & Goldscheider, N. (2009). Using tracer tests and hydrological observations to evaluate effects of tunnel drainage on groundwater and surface waters in the Northern Apennines (Italy). Hydrogeology Journal, 17, 135–150.

    Article  CAS  Google Scholar 

  100. Wang, J. S. Y., & Narasimhan, T. N. (1993). Unsaturated flow in fractured porous media. In J. Bear, C.-F. Tsang, & G. de Marsily (Eds.), Flow and contaminant transport in fractured rock (pp. 325–394). San Diego, California: Academic Press.

    Chapter  Google Scholar 

  101. Wang, Z., Jury, W. A., & Atac, T. (2004). Unstable flow during redistribution: Controlling factors and practical implications. Vadose Zone Journal, 3, 549–559.

    Google Scholar 

  102. Weiler, M., Naef, F., & Leibundgut, C. (1998). Study of runoff generation on hillslopes using tracer experiments and physically based numerical model. IAHS Publication, 248, 353–360.

    CAS  Google Scholar 

  103. Williams, P. W., & Fowler, A. (2002). Relationship between oxygen isotopes in rainfall, cave percolation waters and speleothem calcite at Waitomo, New Zealand. New Zealand Journal of Hydrology, 41, 53–70.

    Google Scholar 

  104. Winograd, I. J. & Thordarson, W. (1975). Hydrogeologic and hydrochemical framework, South-Central Great Basin, Nevada-California, with special reference to the Nevada Test Site. U.S. Geological Survey, Professional Paper 712-C, 126 pp.

  105. Zhao, P. & Zavarin, M.(2008). Analysis of the variability of classified and unclassified radiological source term inventories in the Rainier Mesa/Shoshone Mountain Area, Nevada Test Site. Livermore, CA: Lawrence Livermore National Laboratory, Technical Report LLNL-TR-404695, 16 pp.

  106. Zhao, P; Zavarin, M; Leif, R; Powell, B; Singleton, M; Lindvall, R; & Kersting, A. (2007). Actinide sorption in Rainier Mesa tunnel waters from the Nevada Test Site. Livermore, California: Lawrence Livermore National Laboratory, Technical Report LLNL-TR-400273, 24 pp.

Download references

Acknowledgments

The presentation here benefitted from comments from Joe Fenelon, Randy Laczniak, Paul Hsieh, Don Sweetkind, Ben Mirus, and 11 anonymous reviewers. Prepared in cooperation with the US Department of Energy, National Nuclear Security Administration, Nevada Site Office, under Interagency Agreement DE-AI52-07NV28100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Ebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebel, B.A., Nimmo, J.R. An Alternative Process Model of Preferential Contaminant Travel Times in the Unsaturated Zone: Application to Rainier Mesa and Shoshone Mountain, Nevada. Environ Model Assess 18, 345–363 (2013). https://doi.org/10.1007/s10666-012-9349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-012-9349-8

Keywords

Navigation