Skip to main content
Log in

Shear horizontal surface acoustic waves in functionally graded magneto-electro-elastic half-space

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The propagation of shear horizontal surface acoustic waves (SHSAWs) in an inhomogeneous magneto-electro-elastic (MEE) half-space with 6-mm symmetry is studied. By virtue of both the direct approach and Stroh-formalism, the dispersion relations corresponding to two general cases of material properties variation are obtained. In the first case, it is assumed that all material properties involving the MEE properties and density vary similarly in depth, whereas, the second case considers identical variation for the MEE properties, which differs from the variation of the density. The non-dispersive SHSAW velocities pertinent to the homogeneous MEE media are obtained under eight different surface electromagnetic boundary conditions as the limiting cases of the current study. The dispersion curves corresponding to eleven inhomogeneity profiles of practical importance are presented in an effective dimensionless format, and the effects of different types of inhomogeneity functions describing the composition of the functionally graded magneto-electro-elastic (FGMEE) half-space on the dispersion relation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nan CW, Bichurin M, Dong S, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103(3):031101

    Article  ADS  Google Scholar 

  2. Van Suchtelen J (1972) Product properties: a new application of composite materials. Philips Res Rep 27(1):28–37

    Google Scholar 

  3. Van den Boomgaard J, Terrell D, Born R, Giller H (1974) An in situ grown eutectic magnetoelectric composite material. J Mater Sci 9(10):1705–1709

    Article  ADS  Google Scholar 

  4. Van Run A, Terrell D, Scholing J (1974) An in situ grown eutectic magnetoelectric composite material. J Mater Sci 9(10):1710–1714

    Article  ADS  Google Scholar 

  5. Van den Boomgaard J, Van Run A, Suchtelen JV (1976) Magnetoelectricity in piezoelectric–magnetostrictive composites. Ferroelectrics 10(1):295–298

    Article  Google Scholar 

  6. Van den Boomgaard J, Born R (1978) A sintered magnetoelectric composite material BaTiO\(_{3}\)–Ni(Co,Mn)Fe\(_{2}\)O\(_{4}\). J Mater Sci 13(7):1538–1548

    Article  ADS  Google Scholar 

  7. Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D 38(8):R123

    Article  ADS  Google Scholar 

  8. Rayleigh L (1885) On waves propagated along the plane surface of an elastic solid. Proc Lond Math Soc s1–17(1):4–11

    Article  MathSciNet  MATH  Google Scholar 

  9. Love AEH (1967) Some problems of geodynamics: being an essay to which the Adams prize in the University of Cambridge was adjudged in 1911. CUP Archive

  10. Bleustein JL (1968) A new surface wave in piezoelectric materials. Appl Phys Lett 13(12):412–413

    Article  ADS  Google Scholar 

  11. Gulyaev YV (1969) Electroacoustic surface waves in solids. Sov Phys JETP Lett 9:37–38

    ADS  Google Scholar 

  12. Daros C (2003) On modelling Bleustein–Gulyaev waves in non-homogeneous, transversely isotropic, piezoelectric media via stress equations of motion. Acta Mech 163(1–2):121–126

    MATH  Google Scholar 

  13. Collet B, Destrade M, Maugin GA (2006) Bleustein–Gulyaev waves in some functionally graded materials. Eur J Mech A Solids 25(5):695–706

    Article  MathSciNet  MATH  Google Scholar 

  14. Eskandari M, Shodja HM (2008) Love waves propagation in functionally graded piezoelectric materials with quadratic variation. J Sound Vib 313(1–2):195–204

    Article  ADS  Google Scholar 

  15. Qian ZH, Jin F, Lu T, Kishimoto K (2008) Transverse surface waves in functionally graded piezoelectric materials with exponential variation. Smart Mater Struct 17(6):065005

    Article  ADS  Google Scholar 

  16. Li P, Jin F, Qian Z (2013) Propagation of the Bleustein–Gulyaev waves in a functionally graded transversely isotropic electro-magneto-elastic half-space. Eur J Mech A 37:17–23

    Article  MathSciNet  Google Scholar 

  17. Alshits V, Darinskii A, Lothe J (1992) On the existence of surface waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties. Wave Motion 16:265–283

    Article  MATH  Google Scholar 

  18. Soh AK, Liu JX (2006) Interfacial shear horizontal waves in a piezoelectric–piezomagnetic bi-material. Philos Mag Lett 86(1):31–35

    Article  ADS  Google Scholar 

  19. Huang Y, Li XF, Lee K (2009) Interfacial shear horizontal (SH) waves propagating in a two-phase piezoelectric/piezomagnetic structure with an imperfect interface. Philos Mag Lett 89(2):95–103

    Article  ADS  Google Scholar 

  20. Melkumyan A, Mai YW (2008) Influence of imperfect bonding on interface waves guided by piezoelectric/piezomagnetic composites. Philos Mag 88(23):2965–2977

    Article  ADS  Google Scholar 

  21. Wei W, Liu J, Fang D (2009) Shear horizontal surface waves in a piezoelectric–piezomagnetic coupled layered half-space. Int J Nonlinear Sci Numer Simul 10(6):767–778

    Article  Google Scholar 

  22. Liu J, Fang D, Liu X (2007) A shear horizontal surface wave in magnetoelectric materials. IEEE Trans Ultrason Ferroelectr Freq Control 54(7):1287–1289

    Article  MathSciNet  Google Scholar 

  23. Wang Q, Wang LW, Lu KQ (2007) Melting of superheated crystals initiated on vacancies. Philos Mag Lett 87(1):19–24

    Article  ADS  Google Scholar 

  24. Wei-Yi W, Jin-Xi L, Dai-Ning F (2009) Existence of shear horizontal surface waves in a magneto-electro-elastic material. Chin Phys Lett 26(10):104301

    Article  ADS  Google Scholar 

  25. Melkumyan A (2007) International twelve shear surface waves guided by clamped/free boundaries in magneto-electro-elastic materials. J Solids Struct 44(10):3594–3599

    Article  MATH  Google Scholar 

  26. Nan CW (1994) Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys Rev B 50:6082–6088

    Article  ADS  Google Scholar 

  27. Yang J (2000) Bleustein–Gulyaev waves in piezoelectromagnetic materials. Int J Appl Electromagn Mech 12(3):235–240

    Google Scholar 

  28. Wilson JT (1942) Surface waves in a heterogeneous medium. Bull Seismol Soc Am 32(4):297–304

    MathSciNet  Google Scholar 

  29. Deresiewicz H (1962) A note on Love waves in a homogeneous crust overlying an inhomogeneous stratum. Bull Seismol Soc Am 52:639–645

    Google Scholar 

  30. Bhattacharya S (1970) Exact solutions of SH wave equation for inhomogeneous media. Bull Seismol Soc Am 60(6):1847–1859

    Google Scholar 

  31. Viktorov IA (1979) Types of acoustic surface waves in solids (review). Sov Phys Acoust 25:1–9

    ADS  MathSciNet  Google Scholar 

  32. Maugin GA (1983) Elastic surface waves with transverse horizontal polarization. Bull Seismol Soc Am 23:373–434

    MATH  Google Scholar 

  33. Dutta S (1963) Love waves in a nonhomogeneous internal stratum lying between two semi-infinite isotropic media. Geophysics 28(2):156–160

    Article  ADS  Google Scholar 

  34. Erdogan F, Ozturk M (1992) Diffusion problems in bonded nonhomogeneous materials with an interface cut. Int J Eng Sci 30(10):1507–1523

    Article  MATH  Google Scholar 

  35. Hasanyan DJ, Piliposian GT, Kamalyan AH, Karakhanyan MI (2003) Some dynamic problems for elastic materials with functional inhomogeneities: anti-plane deformations. Contin Mech Thermodyn 15(5):519–527

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Li JY, Dunn ML (1998) Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior. J Intell Mater Syst Struct 9(6):404–416

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Shodja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shodja, H.M., Eskandari, S. & Eskandari, M. Shear horizontal surface acoustic waves in functionally graded magneto-electro-elastic half-space. J Eng Math 97, 83–100 (2016). https://doi.org/10.1007/s10665-015-9798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-015-9798-6

Keywords

Navigation