Skip to main content
Log in

Detailed comparison of numerical methods for the perturbed sine-Gordon equation with impulsive forcing

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The properties of various numerical methods for the study of the perturbed sine-Gordon (sG) equation with impulsive forcing are investigated. In particular, finite difference and pseudo-spectral methods for discretizing the equation are considered. Different methods of discretizing the Dirac delta are discussed. Various combinations of these methods are then used to model the soliton–defect interaction. A comprehensive study of convergence of all these combinations is presented. Detailed explanations are provided of various numerical issues that should be carefully considered when the sG equation with impulsive forcing is solved numerically. The properties of each method depend heavily on the specific representation chosen for the Dirac delta—and vice versa. Useful comparisons are provided that can be used for the design of the numerical scheme to study the singularly perturbed sG equation. Some interesting results are found. For example, the Gaussian approximation yields the worst results, while the domain decomposition method yields the best results, for both finite difference and spectral methods. These findings are corroborated by extensive numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Scott AC, Chu FYF, McLaughlin DW (1973) The soliton: a new concept in applied science. Proc IEEE 61:1443–1483

    Article  ADS  MathSciNet  Google Scholar 

  2. Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  3. Fei Z (1992) Y S Kivshar and L Vázquez, Resonant kink–impurity interaction in the sine-Gordon model. Phys Rev A 45:6019–6030

    Article  ADS  Google Scholar 

  4. Forinash K, Peyrard M, Malomed BA (1994) Interaction of discrete breathers with impurity modes. Phys Rev E 49:3400–3411

    Article  ADS  Google Scholar 

  5. Cao XD, Malomed BA (1995) Soliton-defect collisions in the nonlinear Schrödinger equation. Phys Lett A 206:177–182

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Ernst T, Brand J (2010) Resonant trapping in the transport of a matter-wave soliton through a quantum well. Phys Rev A 81(033614):1–11

    Google Scholar 

  7. Goodman RH, Holmes PJ, Weinstein MI (2002) Interaction of sine-Gordon kinks with defects: phase space transport in a two-mode model. Physica D 161:21–44

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Goodman RH, Slusher RE, Weinstein MI (2002) Stopping light on a defect. J Opt Soc Am B 19:1635–1652

    Article  ADS  Google Scholar 

  9. Goodman RH, Haberman R (2004) Interaction of sine-Gordon kinks with defects: the two-bounce resonance. Physica D 195:303–323

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Goodman RH, Haberman R (2007) Chaotic scattering and the \(n\)-bounce resonance in solitary–wave interactions. Phys Rev Lett 98(104103):1–4

    Google Scholar 

  11. Fratalocchi A, Assanto G (2007) Symmetry-breaking instabilities in perturbed optical lattices: nonlinear nonreciprocity and macroscopic self-trapping. Phys Rev A 75(063828):1–5

    MathSciNet  Google Scholar 

  12. Mak WCK, Malomed BA, Chu PL (2003) Interaction of a soliton with a local defect in a Bragg grating. J Opt Soc Am B 20:725–735

    Article  ADS  Google Scholar 

  13. Morales-Molina L, Vicencio RA (2006) Trapping of discrete solitons by defects in nonlinear waveguides arrays. Opt Lett 31:966–968

    Article  ADS  Google Scholar 

  14. Pando CL, Doedel EJ (2005) Onset of chaotic symbolic synchronization between population inversions in an array of weakly coupled Bose–Einstein condensates. Phys Rev E 71(5 Pt 2): 056201

    Google Scholar 

  15. Peyrard M, Kruskal MD (1984) Kink dynamics in the highly discrete sine-Gordon system. Physica D 14:88–102

    Article  ADS  MathSciNet  Google Scholar 

  16. Piette B, Zakrzewski WJ (2007) Scattering of sine-Gordon kinks on potential wells. J Phys A 40(5995):1–16

    Google Scholar 

  17. Soffer A, Weinstein MI (2005) Theory of nonlinear dispersive waves and selection of the ground state. Phys Rev Lett 95(213905):1–4

    Google Scholar 

  18. Trombettoni A (2003) Discrete nonlinear Schrödinger equation with defects. Phys Rev E 67(016607):1–11

    MathSciNet  Google Scholar 

  19. Friedlander FG, Joshi MS (1998) Introduction to the theory of distributions. Cambridge University Press, Cambridge

    Google Scholar 

  20. Ablowitz MJ, Herbst BM, Schober CM (1995) Numerical simulation of quasi-periodic solutions of the sine-Gordon equation. Phycica D 87:37–47

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Jung J-H, Don WS (2009) Collocation methods for hyperbolic partial differential equations with singular sources. Adv Appl Math Mech 1:769–780

    MathSciNet  Google Scholar 

  22. Boyd JP (2001) Chebyshev and Fourier spectral methods. Dover, New York

    MATH  Google Scholar 

  23. B Fornberg (1998) A practical guide to pseudospectral methods. Cambridge Universiy Press, Cambridge

  24. Gottlieb D (1977) Numerical analysis of spectral methods: theory and applications. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  25. Hesthaven JS, Gottlieb S, Gottlieb D (2007) Spectral methods for time-dependent problems. Cambridge Universiy Press, Cambridge

    Book  MATH  Google Scholar 

  26. Trefethen LN (2000) Spectral methods in Matlab. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  27. Chakraborty D, Jung J-H (2013) Efficient determination of the critical parameters and the statistical quantities for Klein–Gordon and sine-Gordon equations with a singular potential using generalized polynomial chaos methods. J Comput Sci 4:46–61

    Article  Google Scholar 

  28. Chakraborty D, Jung J-H, Lorin E (2013) Efficient determination of critical parameters of nonlinear Schrödinger equation with point-like potential using generalized polynomial chaos methods. App Numer Math 72:115–130

    Article  MathSciNet  Google Scholar 

  29. Faddeev LD, Takhtajan LA (1987) Hamiltonian methods in the theory of solitons. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We thank Roy Goodman, Panayotis Kevrekidis, and Jingbo Xia for many valuable discussions. This study was partially supported by the National Science Foundation under Award Number DMS-0908399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Biondini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Jung, JH. & Biondini, G. Detailed comparison of numerical methods for the perturbed sine-Gordon equation with impulsive forcing. J Eng Math 87, 167–186 (2014). https://doi.org/10.1007/s10665-013-9678-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-013-9678-x

Keywords

Navigation