Skip to main content
Log in

A nonlinear eigenvalue problem from thin-film flow

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Steady solutions of a fourth-order partial differential equation modeling the spreading of a thin film including the effects of surface shear, gravity, and surface tension are considered. The resulting fourth-order ordinary differential equation is transformed into a canonical third-order ordinary differential equation. When transforming the problem into standard form the position of the contact line becomes an eigenvalue of the physical problem. Asymptotic and numerical solutions of the resulting eigenvalue problem are investigated. The eigenvalue formulation of the steady problem yields a maximum value of the contact angle of 63.4349.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertozzi AL, Munch A, Shearer M (1999) Undercompressive shocks in thin film flows. Physica D 134: 431–464

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ha Y, Kim Y-J, Myers TG (2008) On the numerical solution of a driven thin film equation. J Comp Phys 227: 7246–7263

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Myers TG (1998) Thin films with high surface tension. SIAM Rev 40: 441–462

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Modern Phys 69: 931–980

    Article  ADS  Google Scholar 

  5. Myers TG, Charpin JPF, Thompson CP (2002) Slowly accreting ice due to supercooled water impacting on a cold surface. Phys Fluids 14: 240–256

    Article  ADS  Google Scholar 

  6. Myers TG, Charpin JPF, Chapman SJ (2002) The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface. Phys Fluids 14: 2788–2803

    Article  MathSciNet  ADS  Google Scholar 

  7. Kataoka DE, Troian SM (1997) A theoretical study of instabilities at the advancing front of thermally driven coating films. J Colloid Interf Sci 192: 350–362

    Article  Google Scholar 

  8. King JR (2001) Two generalisations of the thin film equation. Math Comput Model 34: 737–756

    Article  MATH  Google Scholar 

  9. Tanner LH (1979) The spreading of silicone oil drops on horizontal surfaces. J Phys D 12: 1473–1484

    Article  ADS  Google Scholar 

  10. Middleman S (1995) Modeling axisymmetric flows: dynamics of films, jets, and drops. Academic, New York

    Google Scholar 

  11. Myers TG, Charpin JPF (2000) The effect of the Coriolis force on axisymmetric rotating thin film flows. Int J Non-linear Mech 36: 629–635

    Article  Google Scholar 

  12. Bertozzi AL (1996) Symmetric singularity formation in lubrication-type equations for interface motion. SIAM J Appl Math 56: 681–714

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertozzi AL (1998) The mathematics of moving contact lines in thin liquid films. Not Am Math Soc 45: 689–697

    MathSciNet  MATH  Google Scholar 

  14. Bertozzi AL, Pugh M (1994) The lubrication approximation for thin viscous films: the moving contact line with a “porous media” cut off of van der Waals interactions. Nonlinearity 7: 1535–1564

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Greenspan HP (1978) On the motion of a small viscous droplet that wets a surface. J Fluid Mech 84: 125–143

    Article  ADS  MATH  Google Scholar 

  16. Moriarty JA, Schwartz LW (1992) Effective slip in numerical calculations of moving-contact-line problems. J Eng Math 26: 81–86

    Article  Google Scholar 

  17. Tuck EO, Schwartz LW (1990) Numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Rev 32: 453–469

    Article  MathSciNet  MATH  Google Scholar 

  18. Momoniat E (2011) Numerical investigation of a third-order ODE from thin film flow. Meccanica 46: 313–323

    Article  MathSciNet  Google Scholar 

  19. Bernis F (1996) Finite speed of propagation for thin viscous flow when 2 < n < 3. C R Acad Sci I 322: 1169–1174

    MathSciNet  MATH  Google Scholar 

  20. Bernis F, Peletier LA (1996) Two problems from draining flows involving third-order ordinary differential equations. SIAM J Math Anal 27: 515–527

    Article  MathSciNet  MATH  Google Scholar 

  21. Troy WC (1993) Solutions of third-order differential equations relevant to draining and coating flows. SIAM J Math Anal 24: 155–171

    Article  MathSciNet  MATH  Google Scholar 

  22. Howes FA (1983) The asymptotic solution of a class of third-order boundary value problems arising in the theory of thin film flows. SIAM J Appl Math 43: 993–1004

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Duffy BR, Wilson SK (1997) A third-order differential equation arising in thin-film flows and relevant to Tanner’s Law. Appl Math Lett 10: 63–68

    Article  MathSciNet  MATH  Google Scholar 

  24. Ford WF (1992) A third-order differential equation. SIAM Rev 34: 121–122

    Article  Google Scholar 

  25. Momoniat E, Selway TA, Jina K (2007) Analysis of adomian decomposition applied to a third-order ordinary differential equation from thin film flow. Nonlin Anal A 66: 2315–2324

    Article  MathSciNet  MATH  Google Scholar 

  26. Momoniat E (2009) Symmetries, first integrals and phase planes of a third order ordinary differential equation from thin film flow. Math Comput Model 49: 215–225

    Article  MathSciNet  MATH  Google Scholar 

  27. Constantin P, Dupont TF, Goldstein RE, Kadanoff LP, Shelley MJ, Zhou SM (1993) Droplet breakup in a model of the Hele-Shaw cell. Phys Rev E 47: 4169–4181

    Article  MathSciNet  ADS  Google Scholar 

  28. Buckingham R, Shearer M, Bertozzi A (2003) Thin film traveling waves and the Navier slip condition. SIAM J Appl Math 63: 722–744

    Article  MathSciNet  MATH  Google Scholar 

  29. Ascher U, Russell RD (1981) Reformulation of boundary value problems into “standard” form. SIAM Rev 23: 238–254

    Article  MathSciNet  MATH  Google Scholar 

  30. Scott MR (1973) An initial value method for the eigenvalue problem for systems of ordinary differential equations. J Comput Phys 12: 334–347

    Article  ADS  MATH  Google Scholar 

  31. Abdel-Halim Hassan IH (2002) On solving some eigenvalue problems by using a differential transformation. Appl Math Comput 127: 1–22

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen C-K, Ho S-H (1996) Application of differential transformation to eigenvalue problems. Appl Math Comput 79: 173–188

    Article  MathSciNet  MATH  Google Scholar 

  33. Ames WF, Adams E (1979) Non-linear boundary and eigenvalue problems for the Emden–Fowler equations by group methods. Int J Nonlinear Mech 14: 35–42

    Article  MathSciNet  MATH  Google Scholar 

  34. Ishikawa H (2007) Numerical methods for the eigenvalue determination of second-order ordinary differential equations. J Comput Appl Math 208: 404–424

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Jones DJ (1993) Use of a shooting method to compute eigenvalues of fourth-order two-point boundary value problems. J Comput Appl Math 47: 395–400

    Article  MathSciNet  MATH  Google Scholar 

  36. Shampine LF, Reichelt MW, Kierzenka J, Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. www.mathworks.com/bvp_tutorial. Accessed 25 April 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Momoniat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momoniat, E. A nonlinear eigenvalue problem from thin-film flow. J Eng Math 79, 91–99 (2013). https://doi.org/10.1007/s10665-012-9564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-012-9564-y

Keywords

Navigation