Skip to main content
Log in

Flexural gravity wave over a floating ice sheet near a vertical wall

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The behavior of flexural gravity waves propagating over a semi-infinite floating ice sheet is studied under the assumptions of small amplitude linear wave theory. The vertical wall is assumed to be either fixed or harmonically oscillating with constant horizontal displacement, in which case the problem is analogous with a harmonically oscillating plane vertical wavemaker. The potential flow approach is adhered to and the higher-order mode–coupling relations are applied to determine the unknown coefficients present in the Fourier expansion formula of the potential functions. The ice sheet is modeled as a thin semi-infinite elastic beam. Three different edge conditions are applied at the finite edge of the floating ice sheet. The effects of different edge conditions, the thickness of the ice sheet and the water depth on the surface strain, the shear force along the ice sheet, the horizontal force on the vertical wall, and the flexural gravity wave profile are analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takizawa T (1985) Deflection of a floating sea ice sheet induced by a moving load. Cold Reg Sci Tech 11: 171–180

    Article  Google Scholar 

  2. Masterson DM (2009) State of the art of ice bearing capacity and ice construction. Cold Reg Sci Technol 58: 99–112

    Article  Google Scholar 

  3. Timco GW, Weeks WF (2010) A review of the engineering properties of sea ice. Cold Reg Sci Technol 60: 107–129

    Article  Google Scholar 

  4. Squire VA (1993) The breakup of shore fast sea ice. Cold Reg Sci Technol 21: 211–218

    Article  Google Scholar 

  5. Squire VA, Dugan JP, Wadhams P, Rottier PJ, Liu AK (1995) Of ocean waves and sea ice. Annu Rev Fluid Mech 27: 115–168

    Article  MathSciNet  ADS  Google Scholar 

  6. Squire VA (2007) Of ocean waves and sea-ice revisited. Cold Reg Sci Technol 49(2): 110–133

    Article  Google Scholar 

  7. Kashiwagi M (2000) Research on hydroelastic responses of VLFS: recent progress and future work. Int J Offshore Polar Eng 10(2): 81–90

    Google Scholar 

  8. Watanabe E, Utsunomiya T, Wang CM (2004) Hydroelastic analysis of pontoon-type VLFS: a literature survey. Eng Struct 26(2): 245–256

    Article  Google Scholar 

  9. Chen X, Wu Y, Cui W, Jensen JJ (2006) Review of hydroelasticity theories for global response of marine structures. Ocean Eng 33: 439–457

    Article  Google Scholar 

  10. Squire VA (2008) Synergies between VLFS hydroelasticity and sea-ice research. Int J Offshore Polar Eng 18(3): 1–13

    MathSciNet  Google Scholar 

  11. Greenhill AG (1887) Wave motion in hydrodynamics. Am J Math 9: 62–112

    Article  Google Scholar 

  12. Fox C, Squire VA (1994) On the oblique reflection and transmission of ocean waves at shore fast sea ice. Phil Trans R Soc Lond A 347: 185–218

    Article  ADS  MATH  Google Scholar 

  13. Ohkusu M, Namba Y (1996) Analysis of hydroelastic behavior of a large floating platform of thin plate configurations in waves. In: Proceedings of 2nd international workshop on very large floating bodies, Hayama Japan, pp 143–148

  14. Sahoo T, Yip TL, Chwang AT (2001) Scattering of surface waves by a semi-infinite floating elastic plate. Phys Fluids 13(11): 3215–3222

    Article  ADS  Google Scholar 

  15. Evans DV, Davies TV (1968) Wave-ice interaction. Technical report 1313. Davidson Laboratory, Stevens Institute of Technology, New Jersey

  16. Balmforth NJ, Craster RV (1999) Ocean waves and ice sheets. J Fluid Mech 395: 89–124

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Chung H, Fox C (2002) Calculation of wave-ice interaction using the Wiener-Hopf technique. N Z J Math 31: 1–18

    MathSciNet  ADS  Google Scholar 

  18. Tkacheva LA (2004) The diffraction of surface waves by a floating elastic plate at oblique incidence. J Appl Math Mech 68(3): 425–436

    Article  MathSciNet  Google Scholar 

  19. Linton CM, Chung H (2003) Reflection and transmission at the ocean/sea-ice boundary. Wave Motion 38(1): 43–52

    Article  MathSciNet  MATH  Google Scholar 

  20. Evans DV, Porter R (2003) Wave scattering by narrow cracks in ice sheets floating on water of finite depth. J Fluid Mech 484: 143–165

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Peter MA, Meylan MH, Chung H (2004) Wave scattering by a circular elastic plate in water of finite depth: a closed form solution. Int J Offshore Polar Eng 14(2): 81–85

    Google Scholar 

  22. Hassan M, Meylan MH, Peter MA (2009) Water-wave scattering by submerged elastic plates. Q J Mech Appl Math 62(3): 321–344

    Article  MATH  Google Scholar 

  23. Meylan MH (2002) Wave response of an ice floe of arbitrary geometry. J Geophys Res Oceans 107: 3005

    Article  ADS  Google Scholar 

  24. Wang CD, Meylan MH (2004) A higher-order-coupled boundary element and finite element method for the wave forcing of a floating elastic plate. J Fluids Struct 19: 557–572

    Article  Google Scholar 

  25. Peter MA, Meylan MH (2004) Infinite-depth interaction theory for arbitrary floating bodies applied to wave forcing of ice floes. J Fluid Mech 500: 145–167

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Bennetts LG, Peter MA, Squire VA, Meylan MH (2010) A three-dimensional model of wave attenuation in the marginal ice zone. J Geophys Res 115: C12043

    Article  ADS  Google Scholar 

  27. Williams TD, Squire VA (2004) Oblique scattering of plane flexural gravity waves by heterogeneities in sea-ice. Proc R Soc Lond A 460(2052): 3469–3497

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Gayen R, Mandal BN, Chakrabarti A (2005) Water-wave scattering by an ice-strip. J Eng Math 53: 21–37

    Article  MathSciNet  MATH  Google Scholar 

  29. Hong DC, Hong SY, Hong SW (2006) Reduction of hydroelastic responses of a very-long floating structure by a floating oscillating-water-column breakwater system. Ocean Eng 33: 610–634

    Article  Google Scholar 

  30. Manam SR, Bhattacharjee J, Sahoo T (2006) Expansion formulae in wave structure interaction problems. Proc R Soc Lond A 462(2065): 263–287

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Wang CD, Meylan MH, Porter R (2007) The linear-wave response of a periodic array of floating elastic plates. J Eng Math 57: 23–40

    Article  MathSciNet  MATH  Google Scholar 

  32. Bhattarcharjee J, Karmakar D, Sahoo T (2007) Transformation of flexural gravity waves by heterogeneous boundaries. J Eng Math 62: 173–188

    Article  Google Scholar 

  33. Hegarty GM, Squire VA (2008) A boundary-integral method for the interaction of large-amplitude ocean waves with a compliant floating raft such as a sea-ice floe. J Eng Math 62: 355–372

    Article  MathSciNet  MATH  Google Scholar 

  34. Squire VA, Williams TD (2008) Wave propagation across sea-ice thickness changes. Ocean Model 21: 1–11

    Article  ADS  Google Scholar 

  35. Peter MA, Meylan MH (2008) Time-dependent motion of water waves and a vertical elastic plate. In: Proceedings of 23rd international workshop on water waves and floating bodies, Jeju, Korea

  36. Korobkin AA, Stukolov SV, Sturova IV (2009) Motion of a vertical wall fixed on springs under the action of surface waves. J Appl Mech Tech Phys 50(5): 841–849

    Article  ADS  Google Scholar 

  37. Karmakar D, Bhattacharjee J, Sahoo T (2009) Wave interaction with multiple articulated floating elastic plates. J Fluids Struct 25: 1065–1078

    Article  Google Scholar 

  38. Karmakar D, Bhattacharjee J, Sahoo T (2010) Oblique flexural gravity-wave scattering due to changes in bottom topography. J Eng Math 66: 325–341

    Article  MathSciNet  MATH  Google Scholar 

  39. Riyansyah M, Wang CM, Choo YS (2010) Connection design for two-floating beam system for minimum hydroelastic response. Marine Struct 23: 67–87

    Article  Google Scholar 

  40. Stoker JJ (1947) Surface waves in water of variable depth. Q Appl Math 5: 1–54

    MathSciNet  MATH  Google Scholar 

  41. Rhodes-Robinson PF (1982) Note on the reflection of water waves at a wall in the presence of surface tension. Proc Camb Philos Soc 92: 369–373

    Article  MathSciNet  MATH  Google Scholar 

  42. Christensen FT (1987) Vertical ice forces on long straight walls. Cold Reg Sci Technol 13: 215–218

    Article  Google Scholar 

  43. Williams T, Squire V (2002) Ice coupled waves near a deep water tide crack or ice jetty. In: Ice in the environment. Proceedings of the 16th IAHR international symposium on ice

  44. Chakrabarti A, Ahluwalia DS, Manam SR (2003) Surface water waves involving a vertical barrier in the presence of an ice-cover. Int J Eng Sci 41: 1145–1162

    Article  MathSciNet  MATH  Google Scholar 

  45. Brocklehurst P, Korobkin AA, Părău EI (2010) Interaction of hydro-elastic waves with a vertical wall. J Eng Math 68: 215–261

    Article  MATH  Google Scholar 

  46. Havelock TH (1929) Forced surface waves on water. Philos Mag 8: 569–578

    MATH  Google Scholar 

  47. Ursell F (1947) The effect of a fixed vertical barrier on surface waves in deep water. Proc Camb Philos Soc 43: 374–382

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Ursell F, Dean RG, Yu YS (1960) Forced small-amplitude water waves: a comparison of theory and experiment. J Fluid Mech 7: 33–52

    Article  ADS  MATH  Google Scholar 

  49. Chwang AT, Li W (1983) A piston-type porous wavemaker theory. J Eng Math 17: 301–313

    Article  MATH  Google Scholar 

  50. Magrab EB (1979) Vibrations of elastic structural members. Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands

    MATH  Google Scholar 

  51. Lawrie JB, Abrahams ID (1999) An orthogonality relation for a class of problems with high-order boundary conditions; Applications in sound-structure interaction. Q J Mech Appl Math 52(2): 161–181

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Guedes Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, J., Guedes Soares, C. Flexural gravity wave over a floating ice sheet near a vertical wall. J Eng Math 75, 29–48 (2012). https://doi.org/10.1007/s10665-011-9511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-011-9511-3

Keywords

Navigation