Skip to main content
Log in

Comprehensive health evaluation of an urban wetland using quality indices and decision trees

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In a world where pristine water is becoming scarcer, the need to reuse water becomes imperative. In this context explaining the water quality, purpose fitness and the parameters or conditions of the water body to adjust so as to improve its quality, are of great relevance. The goal of the present study was the use of water, riverine, and biodiversity quality indices to assess the condition of the studied urban wetland, since no single index can provide a complete health assessment of a water body. Decision trees were also used to elucidate the best water parameters to mend in order to recover the overall health of the urban wetland. The decision trees identified relevant physicochemical parameters as well as their approximate concentration at which a healthy water environment can be sustained for zooplankton and proved to be a powerful and simple alternative to customary approaches. Suspended particles and phosphates proved to be important parameters with concentrations approximately lower than 88 mg L−1 and 11 mg L−1, respectively, for a good biodiversity index of zooplankton. Ammonia, total coliforms, BOD, nitrates, and sodium were the main parameters that affected the water quality index. The vegetation coverage and its structure were the driving factors in the riverine quality index of the wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

We do not quite understand the comment. We understood "Data Availability" as the "Supplementary information"; if this is not the case, then we do not have any more data available.

References

  • Abbasi, T., & Abbasi, S. A. (2012). Water Quality Indices. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Aguilar Ibarra, A., Zambrano, L., Valiente, E., & Ramos Bueno, A. (2013). Enhancing the potential value of environmental services in urban wetlands: an agro-ecosystem approach. Cities, 31, 483–443.

    Google Scholar 

  • Alabaster, J. S., & Lloyd, D. S. (Eds.). (1982). Finely divided solids. London, England: Butterworth-Heinemann.

  • Balqis, S. A. R., Yusoff, F. M., Nishikawa, J., Lindsay, D., & Nishida, S. (2019). Influence of environmental parameters on habitat preference of gelatinous zooplankton in various coastal ecosystems, the Straits of Malacca. Regional Studies in Marine Science, 30, 100712.

    Google Scholar 

  • Beklioglu, M., Meerfhoff, M., Søndergaard, M., & Jeppesen, E. (2010). Chapter 4 Eutrophication and restoration of shallow lakes from a cold temperate to a warm mediterranean and a (sub) tropical climate. In A. Ansari, G. S. Singh, G. Lanza, & W. Rast (Eds.), Eutrophication: Causes, consequences and control: Springer, Dordrecht.

  • Bilottaa, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42, 2849–2861. 

    Article  CAS  Google Scholar 

  • Bojorquez, M., & Villa, E. (1995). Presente, pasado y futuro de las chinampas. México: CIESAS.

    Google Scholar 

  • Bora, M., & Goswami, D. C. (2016). Water quality assessment in terms of Water Quality Index (WQI): case study of the Kolong River, Assam, India. Applied Water Science, 7, 3125–3135.

    Google Scholar 

  • Boyd, C. E., & Gautier, D. (2000). Effluent composition and water quality standards. Global Aquaculture Advocate, 3(5), 61–66.

    Google Scholar 

  • Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). A water quality index—Do we dare? Water and Sewage Works, 117(10), 339–343.

    Google Scholar 

  • Burkholder, J. M., Shumway, S. E., & Glibert, P. M. (2018). Food web and ecosystem impacts of harmful algae. In S. E. Shumway, J. M. Burkholder, & S. T. Morton (Eds.), Harmful Algal Blooms: A Compendium Desk Reference (pp. 243–336). Ltd: Wiley Online Library John Wiley & Sons.

    Google Scholar 

  • Burnet, J. B., Faraj, T., Cauchie, H. M., Joaquim-Justo, C., Servais, P., Prevost, M., & Dorner, S. M. (2017). How does the Cladoceran Daphnia pulex affect the fate of Escherichia coli in water? PLoS One, 12, e0171705.

    Google Scholar 

  • Conesa Fernandez-Vitora, V. (1995). Methodological guide for environmental impact evaluation (Guía metodológica para la evalución del impacto ambiental) (2nd ed.). Madrid, Spain: Mundi-Prensa.

    Google Scholar 

  • Contreras, V., Martínez-Meyer, E., & ValienteL., Z. , E. (2009). Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biological Conservation, 142, 2881–2885.

    Google Scholar 

  • Decosta, J., Janicki, A., Shellito, G., & Wilcox, G. (1983). The effect of phosphorus additions in enclosures on the phytoplankton and zooplankton of an acid lake. Oikos, 40(2), 283–294.

    CAS  Google Scholar 

  • Eivers, R. S., Duggan, I. C., Hamilton, D. P., & Quinn, J. M. (2018). Constructed treatment wetlands provide habitat for zooplankton communities in agricultural peat lake catchments. Wetlands, 38, 95–108.

    Google Scholar 

  • Ellis, J. B., Shutes, R. B. E., & Revitt, D. M. (2003). Guidance Manual for Constructed Wetlands R&D Technical Report P2–159/TR2. London: Retrieved from Middlesex University.

    Google Scholar 

  • European Commission 98/83/. (1998). Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal of the European Communities. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN

  • Freese, H. M., & Martin-Creuzburg, D. (2013). Food quality of mixed bacteria–algae diets for Daphnia magna. Hydrobiologia, 715(1), 63–76.

    CAS  Google Scholar 

  • Fresh Fish Directive 78/659/EEC. (1978). Council Directive on the quality of fresh waters needing protection or improvement in order to support fish life. Official Journal of the European Communities. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31978L0659&from=EN

  • Gamble, A., & Babbar-Sebens, M. (2012). On the use of multi-variate statistical methods for combining in-stream monitoring data and spatial analysis to characterize water quality conditions in the White River Basin, Indiana, USA. Environmental Monitoring and Assessment, 184, 845.

    Google Scholar 

  • García-Chicote, J., Armengol, X., & Rojo, C. (2018). Zooplankton abundance: A neglected key element in the evaluation of reservoir water quality. Limnologica, 69, 46–54.

    Google Scholar 

  • Ger, K. A., Urrutia-Cordero, P., Frost, P. C., Hansson, L. A., Sarnelle, O., Wilson, A. E., & Lürling, M. (2016). The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful algae, 54, 128–144.

    Google Scholar 

  • Hayashi-Martins, L. H., Mansano, A. S., Hisatugo, K. F., Rocha, O., & Seleghim, M. H. R. (2017). In vitro evaluation of the bacterivore potential of three Cladoceran species occurring in tropical and subtropical regions. Brazilian Journal of Biology, 77(4), 840–847.

    CAS  Google Scholar 

  • Hoffmann, J. M. (2017). Investigating trophic ecology and dietary niche overlap among morphs of Lake Trout in Lake Superior (Master’s thesis). Ontario, Canada: University of Waterloo.

    Google Scholar 

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37(3), 300e306.

  • International Finance Corporation. (1998). Environmental, Health, and Safety Guidelines for Fish Processing. Washington, DC.

  • Jonnalagadda, S. B., & Mhere, G. (2001). Water quality of the Odzi river in th eastern highlands of Zimbabwe. Water Research, 35, 2371–2376.

    CAS  Google Scholar 

  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., & Abdul Shah, Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72, 301–309.

    CAS  Google Scholar 

  • Kozlowsky-Suzuki, B., Karjalainen, M., Marja Koski, M., Carlsson, P., Stolte, W., Balode, M., & Granéli, E. (2007). Disruption of the microbial food web and inhibition of metazooplankton development in the presence of iron- and DOM-stimulated Baltic Sea cyanobacteria. Marine Ecology Progress Series, 337, 15–26.

    Google Scholar 

  • Kükrer, S., & Mutlu, E. (2019). Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environmental Monitoring and Assessment, 191, 71–86.

    Google Scholar 

  • Ledesma, C., Bonansea, M., Rodriguez, C. M., & Sánchez-Delgado, A. R. (2013). Determinación de indicadores de eutrofización en el embalse Río Tercero, Córdoba (Argentina). Revista Ciencia Agronômica, 44(3), 419–425.

    Google Scholar 

  • Marotta, H., Bento, L., Esteves, F. A., & Entich-Prast, A. (2009). Whole ecosystem evidence of eutrophication enhancement by wetland dredging in a shallow tropical lake. Estuaries and Coasts, 32, 654–660.

    CAS  Google Scholar 

  • Martin, S. A., Blackwell, D., Hogan, D. V., Pinay, G., & Maltby, E. (Eds.). (2009). The role of buffer zones for agricultural runoff: Blackwell Scientific.

  • Munne, A., Prat, N., Sola, C., Bonadaand, N., & Rieradevall, M. (2003). A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquatic Conservation: Marine and Freshwater Ecosystems, 13, 147–163.

    Google Scholar 

  • Niska, M., & Mirosław-Grabowska, J. (2015). Eemian environmental changes recorded in lake deposits from Rzecino (NW Poland): Cladocera, isotopic and selected geochemical data. Journal of Paleolimnology, 53, 89–105. 

    Article  Google Scholar 

  • Pesce, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the impact of Cordoba City (Argentina) on Suquia River. Water Research, 34, 2915–2926.

    CAS  Google Scholar 

  • Robertson, M. (1957). The effects of suspended material on the productive rate of Daphnia magna. Institute of Marine Science (University of Texas), 4, 265–277.

    Google Scholar 

  • Ruvalcaba García, A. (2009). Modelación matemática del comportamiento hidrológico de la zona lacustre de Xochimilco, México. (Master in Science thesis), UNAM, México D.F.

  • Sánchez-Carrillo, S. (2010). Chapter 9 Freshwater wetland eutrophication. In A. Ansari, S. Singh Gill, G. Lanza, & W. Rast (Eds.), Eutrophication: Causes, consequences and control: Springer, Dordrecht.

  • Sánchez, E., Colmenarejo, M. F., Vicente, J., Rubio, A., García, M. G., Travieso, L., & Borja, R. (2007). Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecological Indicators, 7, 315–328.

    Google Scholar 

  • Siciliano, A., Gesuele, R., Pagano, G., & Guida, M. (2015). How Daphnia (Cladocera) assays may be used as bioindicators of health effects? Journal of Biodiversity and Endagared Species, S1, 005.

    Google Scholar 

  • Sundbom, M., & Vrede, T. (1997). Effects of fatty acid and phosphorus content of food on the growth, survival and reproduction of Daphnia. Freshwater Biology, 38(3), 665–674.

    CAS  Google Scholar 

  • Taipale, S. J., Brett, M. T., Pulkkinen, K., & Kainz, M. J. (2012). The influence of bacteria-dominated diets on Daphnia magna somatic growth, reproduction, and lipid composition. FEMS Microbiology Ecology, 82(1), 50–62.

    CAS  Google Scholar 

  • Tavşanoğlu, Ü. N., Šorf, M., Stefanidis, K., Brucet, S., Türkan, S., Agasild, H., & Ozen, J. (2017). Effects of nutrient and water level changes on the composition and size structure of zooplankton communities in shallow lakes under different climatic conditions: a pan-European mesocosm experiment. Aquatic Ecology, 51(2), 257–273.

    Google Scholar 

  • Valiñas, M. S., Villafañe, V. E., Cabrerizo, M. J., Romero, C. D., & Helbling, E. W. (2018). Global change effects on plankton community structure and trophic interactions in a Patagonian freshwater eutrophic system. Hydrobiologia, 816(1), 61–77.

    Google Scholar 

  • Van Mooy, B. A., & Fredricks, H. F. (2010). Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: water-column distribution, planktonic sources, and fatty acid composition. Geochimica et Cosmochimica Acta, 74(22), 6499–6516.

    Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581–3592.

    CAS  Google Scholar 

  • Wenzel, A., Bergström, A. K., Jansson, M., & Vrede, T. (2012). Survival, growth and reproduction of Daphnia galeata feeding on single and mixed Pseudomonas and Rhodomonas diets. Freshwater Biology, 57(4), 835–846.

    CAS  Google Scholar 

  • Wylie, J. L., & Currie, D. J. (1991). The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnology and Oceanography, 36(4), 708–728.

    CAS  Google Scholar 

  • Xu, Z., & Boyd, C. E. (2016). Reducing the monitoring parameters of fish pond water quality. Aquaculture, 465, 359–366.

    Google Scholar 

  • Zambrano, L., Contreras, V., Mazari-Hiriart, M., & Zarco-Arista, A. (2009). Spatial heterogeneity of water quality in a highly degraded tropical freshwater ecosystem. Environmental Management, 43, 249–263.

    Google Scholar 

  • Zuo, Q., Han, C., Liu, J., & Ma, J. (2018). A new method for water quality assessment: by harmony degree equation. Environmental Monitoring and Assessment, 190, 162–174.

    Google Scholar 

Download references

Acknowledgements

We thank M. Sc. Antonio Calzada-Villafuerte for his valuable help in the design of theExcel WQI calculator (available in the supplementary information). and figure editing.

Funding

This project was funded by DGAPA, UNAM through the project PAPIIT IN223618 and by Earthwatch Institute in the frame of EY-Earthwatch Ambassador program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Ponce de Leon-Hill.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 41 KB)

Supplementary file2 (XLSX 142 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaparro-Herrera, D., Fuentes-García, R., Hernández-Quiroz, M. et al. Comprehensive health evaluation of an urban wetland using quality indices and decision trees. Environ Monit Assess 193, 183 (2021). https://doi.org/10.1007/s10661-021-08939-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08939-w

Keywords

Navigation