Skip to main content
Log in

Metal contaminations in sediment and associated ecological risk assessment of river Mahanadi, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mahanadi is one of the major rivers of peninsular India. Like other Indian rivers, it is contaminated with sewages, industrial discharges, and agricultural runoff. Thus, necessity was felt to monitor its pollution status. Present work was part of that program and aimed to assess the sediment contamination due to the trace metals Cd, Cr, Cu, Mn, Pb, and Zn during 2012–2015. Sediment pollution status and ecological risks were evaluated calculating contamination factor (CF), geo-accumulation (Igeo), pollution load index (PLI), potential ecological risk (EiR), etc. The recorded metal concentrations were Cd BDL of flame mode of AAS; Cr BDL - 73.9; Cu BDL - 44.4; Mn 37.2 - 1887.0; Pb BDL - 29.5; and Zn BDL - 92.5 mg kg−1. As per US EPA guidelines, Cr concentrations at many locations were in the moderately polluted range. Igeo, CF, mCd, PLI, and EiR indicated low pollution levels and low ecological risks due to the trace metals assessed. The sediment quality guidelines (SQGs) indicated that Cr and Cu concentrations exceeded (16% sample) the threshold effect concentrations and may occasionally exhibit adverse biological effects. The association of sediment organic matter, conductivity and content of Cu, and their grouping in component 1 of PCA revealed that the anthropogenic input was dominant and so also the component 2 where Cr exhibited moderately good correlation with organic matter. Cluster analysis of the sampling sites based on pollution status yielded 3 groups: relatively uncontaminated (S3, S4), low to moderately contaminated (S2), and moderately contaminated (S1, S5, S6) stretches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alagarsamy, R. (2009). Geochemical variability of copper and iron in Oman Margin sediments. Microchemical Journal, 91(1), 111–117.

    Article  CAS  Google Scholar 

  • Ammann, A. A. (2002). Speciation of heavy metals in environmental water by ion chromatography coupled to ICP–MS. Analytical and Bioanalytical Chemistry, 372(3), 448–452.

    Article  CAS  Google Scholar 

  • Asa, S. C., Rath, P., Panda, U. C., Parhi, P. K., & Bramha, S. (2013). Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, East Coast of India. Environmental Monitoring and Assessment, 185(8), 6719–6737.

    Article  CAS  Google Scholar 

  • Barik, S. K., Muduli, P. R., Mohanty, B., Rath, P., & Samanta, S. (2018). Spatial distribution and potential biological risk of some metals in relation to granulometric content in core sediments from Chilika Lake, India. Environmental Science and Pollution Research, 25(1), 572–587.

    Article  CAS  Google Scholar 

  • Cao, Y., Lei, K., Zhang, X., Xu, L., Lin, C., & Yang, Y. (2018). Contamination and ecological risks of toxic metals in the Hai River, China. Ecotoxicology and Environmental Safety, 164, 210–218.

    Article  CAS  Google Scholar 

  • CCME (1999) Canadian water quality guidelines for protection of aquatic life, technical report, Canadian environmental quality guidelines, Canadian water quality index 1.0

  • Chabukdhara, M., & Nema, A. K. (2012). Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach. Chemosphere, 87(8), 945–953.

    Article  CAS  Google Scholar 

  • Chakarvorty, M., Dwivedi, A. K., Shukla, A. D., Kumar, S., Niyogi, A., Usmani, M., & Pati, J. K. (2015). Geochemistry and magnetic measurements of suspended sediment in urban sewage water vis-à-vis quantification of heavy metal pollution in Ganga and Yamuna Rivers, India. Environmental Monitoring and Assessment, 187(9), 604. https://doi.org/10.1007/s10661-015-4794-x.

    Article  CAS  Google Scholar 

  • Chakrapani, G. J., & Subramanian, V. (1993). Heavy metals distribution and fractionation in sediments of the Mahanadi River basin, India. Environmental Geology, 22(1), 80–87.

    Article  CAS  Google Scholar 

  • Dauvalter, V., & Rognerud, S. (2001). Heavy metal pollution in sediments of the Pasvik River drainage. Chemosphere, 42(1), 9–18.

    Article  CAS  Google Scholar 

  • Filho Silva, E. V., Jonathan, M. P., Chatterjee, M., Sarkar, S. K., Sella, S. M., Bhattacharya, A., et al. (2011). Ecological consideration of trace element contamination in sediment cores from Sundarban wetland, India. Environmental Earth Sciences, 63(6), 1213–1225.

    Article  CAS  Google Scholar 

  • Gbem, T. T., Balogun, J. K., Lawal, F. A., & Annune, P. A. (2001). Trace metal accumulation in Clarias gariepinus (Teugels) exposed to sublethal levels of tannery effluent. Science of the Total Environment, 271(1-3), 1–9.

    Article  CAS  Google Scholar 

  • Gupta, S. K., Chabukdhara, M., Kumar, P., Singh, J., & Bux, F. (2014). Evaluation of ecological risk of metal contamination in river Gomti, India: A biomonitoring approach. Ecotoxicology and Environmental Safety, 110, 49–55.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Haritash, A. K., Gaur, S., & Garg, S. (2016). Assessment of water quality and suitability analysis of River Ganga in Rishikesh, India. Applied Water Science, 6(4), 383–392.

    Article  CAS  Google Scholar 

  • Hejabi, A. T., Basavarajappa, H. T., Karbassi, A. R., & Monavari, S. M. (2011). Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environmental Monitoring and Assessment, 182(1-4), 1–13.

    Article  CAS  Google Scholar 

  • Huang, P., Li, T. G., Li, A. C., Yu, X. K., & Hu, N. J. (2014). Distribution, enrichment and sources of heavy metals in surface sediments of the North Yellow Sea. Continental Shelf Research, 73, 1–13.

    Article  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291.

    Article  CAS  Google Scholar 

  • Jamshidi-Zanjani, A., & Saeedi, M. (2017). Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores. Environmental Science and Pollution Research, 24(19), 16289–16304.

    Article  CAS  Google Scholar 

  • Jiang, M., Zeng, G., Zhang, C., Ma, X., Chen, M., Zhang, J., Lu, L., Yu, Q., Hu, L., & Liu, L. (2013). Assessment of heavy metal contamination in the surrounding soils and surface sediments in Xiawangang River, Qingshuitang District. PloS one, 8(8), e71176. https://doi.org/10.1371/journal.pone.0071176.

    Article  CAS  Google Scholar 

  • Jonathan, M. P., Sarkar, S. K., Roy, P. D., Alam, M. A., Chatterjee, M., Bhattacharya, B. D., Bhattacharya, A., & Satpathy, K. K. (2010). Acid leachable trace metals in sediment cores from Sundarban Mangrove Wetland, India: An approach towards regular monitoring. Ecotoxicology, 19(2), 405–418.

    Article  CAS  Google Scholar 

  • Khan, M. Y. A., Gani, K. M., & Chakrapani, G. J. (2017). Spatial and temporal variations of physicochemical and heavy metal pollution in Ramganga River—A tributary of River Ganges, India. Environmental Earth Sciences, 76(5), 231. https://doi.org/10.1007/s12665-017-6547-3.

    Article  CAS  Google Scholar 

  • Kukrer, S., Erginal, A. E., Şeker, S., & Karabıyıkoğlu, M. (2015). Distribution and environmental risk evaluation of heavy metal in core sediments from Lake Çıldır (NE Turkey). Environmental Monitoring and Assessment, 187(7), 453. https://doi.org/10.1007/s10661-015-4685-1.

    Article  CAS  Google Scholar 

  • Li, G., Hu, B., Bi, J., Leng, Q., Xiao, C., & Yang, Z. (2013). Heavy metals distribution and contamination in surface sediments of the coastal Shandong Peninsula (Yellow Sea). Marine Pollution Bulletin, 76(1-2), 420–426.

    Article  CAS  Google Scholar 

  • Li, C., Sun, M., Song, C., Tao, P., Yin, Y., & Shao, M. (2017). Assessment of heavy metal contamination in the sediments of the Shuangtaizi estuary using multivariate statistical techniques. Soil and Sediment Contamination: An International Journal, 26(1), 45–58.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31.

    Article  CAS  Google Scholar 

  • Markandya, A., & Murty, M. N. (2004). Cost–benefit analysis of cleaning the Ganges: Some emerging environment and development issues. Environment and Development Economics, 9(1), 61–81.

    Article  Google Scholar 

  • Martin, J. M., & Meybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7(3), 173–206.

    Article  CAS  Google Scholar 

  • Muller, G. (1979). Heavy-metals in sediment of the Rhine-changes since 1971. Umschau in Wissenschaft und Technik, 79(24), 778–783.

    Google Scholar 

  • Nanda, S. N., & Tiwari, T. N. (2001). Effect of discharge of municipal sewage on the quality of River Mahanadi at Sambalpur. Indian Journal of Environmental Protection, 21(4), 336–343.

    CAS  Google Scholar 

  • Nayak, B. B., Das, J., Panda, U. C., & Acharya, B. C. (2002). Industrial effluents and municipal sewage contamination of Mahanadi estuarine water, Orissa. In Proceedings Allied Publishers Pvt. Ltd. New Delhi, India. pp. 77-86.

  • Nguyen, T. T. H., Zhang, W., Li, Z., Li, J., Ge, C., Liu, J., Bai, X., Feng, H., & Yu, L. (2016). Assessment of heavy metal pollution in Red River surface sediments, Vietnam. Marine Pollution Bulletin, 113(1-2), 513–519.

    Article  CAS  Google Scholar 

  • Ningjing, H., Peng, H., Hui, Z., Xiaojing, W., Aimei, Z., Jihua, L., & Xuefa, S. (2017). Geochemical source, deposition, and environmental risk assessment of cadmium in surface and core sediments from the Bohai Sea, China. Environmental Science and Pollution Research, 24(1), 827–843.

    Article  CAS  Google Scholar 

  • Olojo, E. A. A., Olurin, K. B., Mbaka, G., & Oluwemimo, A. D. (2005). Histopathology of the gill and liver tissues of the African catfish Clarias gariepinus exposed to lead. African Journal of Biotechnology, 4(1), 117–122.

    CAS  Google Scholar 

  • Olutona, G. O., Akindele, E. O., & Ayanda, O. S. (2016). Sediment-associated trace and major metals in the headwaters of a tropical reservoir. Chemistry and Ecology, 32(7), 624–637.

    Article  CAS  Google Scholar 

  • Pal, D., & Maiti, S. K. (2018). Heavy metal speciation, leaching and toxicity status of a tropical rain-fed river Damodar, India. Environmental Geochemistry and Health, 40(6), 2303–2324.

    Article  CAS  Google Scholar 

  • Panda, U. C., Sundaray, S. K., Rath, P., Nayak, B. B., & Bhatta, D. (2006). Application of factor and cluster analysis for characterization of river and estuarine water systems–a case study: Mahanadi River (India). Journal of Hydrology, 331(3-4), 434–445.

    Article  CAS  Google Scholar 

  • Pandey, J., & Singh, R. (2017). Heavy metals in sediments of Ganga River: Up- and downstream urban influences. Applied Water Science, 7(4), 1669–1678.

    Article  CAS  Google Scholar 

  • Persaud, D., Jaagumagi, R., & Hayton, A. (1993). Guidelines for the protection and management of aquatic sediment quality in Ontario. Ministry of Environment and Energy, Ontario. Queen’s Printer for Ontario, p. 27.

  • Radhakrishna, I. (2001). Saline fresh water interface structure in Mahanadi delta region, Orissa, India. Environmental Geology, 40(3), 369–380.

    Article  Google Scholar 

  • Raj, S., Jee, P. K., & Panda, C. R. (2013). Textural and heavy metal distribution in sediments of Mahanadi estuary. East coast of India., 42(3), 370–374.

    CAS  Google Scholar 

  • Raju, K. V., Somashekar, R. K., & Prakash, K. L. (2012). Heavy metal status of sediment in river Cauvery, Karnataka. Environmental Monitoring and Assessment, 184(1), 361–373.

    Article  CAS  Google Scholar 

  • Ren, J., Shang, Z., Tao, L., & Wang, X. (2015). Multivariate analysis and heavy metals pollution evaluation in Yellow River surface sediments. Polish Journal of Environmental Studies, 24(3), 1041–1048.

    CAS  Google Scholar 

  • Romano, S., Mugnai, C., Giuliani, S., Turetta, C., Nguyen, H. C., Bellucci, L. G., et al. (2012). Metals in sediment cores from nine coastal lagoons in central Vietnam. American Journal of Environmental Sciences, 8(2), 130–142.

    Article  CAS  Google Scholar 

  • Saleem, M., Iqbal, J., & Shah, M. H. (2013). Study of seasonal variations and risk assessment of selected metals in sediments from Mangla Lake, Pakistan. Journal of Geochemical Exploration, 125, 144–152.

    Article  CAS  Google Scholar 

  • Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle (p. 349). Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Samanta, S. (2013). Metal and pesticide pollution scenario in Ganga River system. Aquatic Ecosystem Health & Management, 16(4), 454–464.

    Article  CAS  Google Scholar 

  • Sanei, H., & Goodarzi, F. (2006). Relationship between organic matter and mercury in recent lake sediment: The physical–geochemical aspects. Applied Geochemistry, 21(11), 1900–1912.

    Article  CAS  Google Scholar 

  • Sarkar, S. K., Mondal, P., Biswas, J. K., Kwon, E. E., Ok, Y. S., & Rinklebe, J. (2017). Trace elements in surface sediments of the Hooghly (Ganges) estuary: Distribution and contamination risk assessment. Environmental Geochemistry and Health, 39(6), 1245–1258.

    Article  CAS  Google Scholar 

  • Siddiqui, E., & Pandey, J. (2019). Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: A basin-scale study. Environmental Science and Pollution Research, 26(11), 10926–10940.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Sinha, S., Singh, V. K., & Murthy, R. C. (2005). Estimation of source of heavy metal contamination in sediments of Gomti River (India) using principal component analysis. Water, Air, and Soil Pollution, 166(1-4), 321–341.

    Article  CAS  Google Scholar 

  • Singh, H., Pandey, R., Singh, S. K., & Shukla, D. N. (2017). Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Applied Water Science, 7, 4133–4149.

    Article  CAS  Google Scholar 

  • Smith, S. L., MacDonald, D. D., Keenleyside, K. A., Ingersoll, C. G., & Field, L. J. (1996). A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. Journal of Great Lakes Research, 22(3), 624–638.

    Article  CAS  Google Scholar 

  • Srivastava, A., Modi, S., & Sharma, S. K. (2013). Extraction of heavy metal concentration in Ganga River, through Eichornea and EDTA. International Journal of Environment, 3(2), 43–50.

    Google Scholar 

  • Sundaray, S. K., Panda, U. C., Nayak, B. B., & Bhatta, D. (2006). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of the Mahanadi river–estuarine system (India)–A case study. Environmental Geochemistry and Health, 28(4), 317–330.

    Article  CAS  Google Scholar 

  • Sundaray, S. K., Nayak, B. B., & Bhatta, D. (2009). Environmental studies on river water quality with reference to suitability for agricultural purposes: Mahanadi river estuarine system, India–A case study. Environmental Monitoring and Assessment, 155(1-4), 227–243.

    Article  CAS  Google Scholar 

  • Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A case study: Mahanadi basin, India. Journal of Hazardous Materials, 186(2-3), 1837–1846.

    Article  CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1), 566–575.

    Article  Google Scholar 

  • Truog, E. (1930). The determination of the readily available phosphorus of soils 1. Agronomy Journal, 22(10), 874–882.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    Article  CAS  Google Scholar 

  • USEPA (1999) US Environmental Protection Agency: Screening level ecological risk assessment protocol for hazardous waste combustion facilities. Appendix E: toxicity reference values, 3

  • Veerasingam, S., Vethamony, P., Murali, R. M., & Fernandes, B. (2015). Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India. Marine Pollution Bulletin, 91(1), 362–367.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1947). Determination of organic matter in the soil by chromic acid digestion. Soil Science, 63, 251–264.

    Article  CAS  Google Scholar 

  • WHO. (2004). Guidelines for drinking water quality (p. 515). Geneva: World Health Organization.

    Google Scholar 

  • Woodling, J. D., Brinkman, S. F., & Horn, B. J. (2001). Nonuniform accumulation of cadmium and copper in kidneys of wild brown trout (Salmo trutta) populations. Archives of Environmental Contamination and Toxicology, 40(3), 381–385.

    Article  CAS  Google Scholar 

  • Yang, T., Chen, J., Li, X., Wu, T., Hu, Z., & Wang, S. (2019). Ecological risk by heavy metal contents in sediments within the Wei River Basin, China. Environmental Earth Sciences, 78(3), 101. https://doi.org/10.1007/s12665-019-8080-z.

    Article  CAS  Google Scholar 

  • Zhang, Y. X., Song, B., Chen, T. B., Fu, F. Y., Huang, F., Pang, R., & Pan, H. M. (2018). Spatial distribution study and pollution assessment of Pb in soils in the Xijiang river drainage of Guangxi. Huan Jing Ke Xue., 39(5), 2446–2455.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the ICAR-Central Inland Fisheries Research Institute (ICAR-CIFRI), Barrackpore, Kolkata, for providing all facilities. The help received from Dr. Sajina A.M. during sampling and assistance received from Ms. Manisha Bhor (ICAR-CIFRI) for making GPS image of the sampling sites are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Samanta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Agrochemicals in Food, Environment and Trade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S., Kumar, V., Nag, S.K. et al. Metal contaminations in sediment and associated ecological risk assessment of river Mahanadi, India. Environ Monit Assess 192 (Suppl 1), 810 (2020). https://doi.org/10.1007/s10661-020-08708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08708-1

Keywords

Navigation