Skip to main content

Advertisement

Log in

Source identification and apportionment of PM2.5 and PM2.5−10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To identify the potential sources responsible for the particulate matter emission from secondary iron and steel smelting factory environment, PM2.5 and PM2.5−10 particles were collected using the low-volume air samplers twice a week for a year. The samples were analyzed for the elemental and black carbon content using x-ray fluorescence spectrometer and optical transmissometer, respectively. The average mass concentrations were 216.26, 151.68, and 138. 62 μg/m3 for PM2.5 and 331.36, 190.01, and 184.60 μg/m3 for PM2.5−10 for the production, outside M1 and outside M2 sites, respectively. The same size resolved data set were used as input for the positive matrix factorization (PMF), principal component factor analysis (PCFA), and Unmix (UNMIX) receptor modeling in order to identify the possible sources of particulate matter and their contribution. The PMF resolved four sources with their respective contributions were metal processing (33 %), e-waste (33 %), diesel emission (22 %) and soil (12 %) for PM2.5, and coking (50 %), soil (29 %), metal processing (16 %) and diesel combustion (5 %) for PM2.5−10. PCFA identified soil, metal processing, Pb source, and diesel combustion contributing 45, 41, 9, and 5 %, respectively to PM2.5 while metal processing, soil, coal combustion and open burning contributed 43, 38, 12, and 7 %, respectively to the PM2.5−10. Also, UNMIX identified metal processing, soil, and diesel emission with 43, 42 and 15 % contributions, respectively for the fine fraction, and metal processing (71 %), soil (21 %) and unidentified source (1 %) for the coarse fraction. The study concluded that metal processing and e-waste are the major sources contributing to the fine fraction while coking and soil contributed to the coarse fraction within the factory environment. The application of PMF, PCFA and UNMIX receptor models improved the source identification and apportionment of particulate matter drive in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, S.M., Pioa, C.A., Freitas, M.C., Reis, M.A., & Trancosoc, M.A. (2005). Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmospheric Environment, 39, 3127–3138.

    Article  CAS  Google Scholar 

  • Begum, B.A., Biswas, S.K., & Hopke, P.K. (2010a). Key issues in controlling air pollutants in Dhaka, Bangladesh. Atmospheric Environment. doi:10.1016/j.atmosenv.2010.10.02.

    Google Scholar 

  • Begum, B.A., Biswas, S.K., Hopke, P.K., & Cohen, D.D. (2006). Multi-element analysis and characterization of atmospheric particulate pollution in Dhaka. Aerosol and Air Quality Research, 6(4), 334–359.

    CAS  Google Scholar 

  • Begum, B.A., Biswas, S.K., Markwitz, A., & Hopke, P.K. (2010b). Identification of sources of fine and coarse particulate matter in Dhaka, Bangladesh. Aerosol and Air Quality Research, 10, 345–353.

    CAS  Google Scholar 

  • Brigden, K., Labunska, I., Santillo, D., & Allsopp, M. (2011). Recycling of electronic wastes in China and India: Workplace and Environment Contamination. Greenpeace Research Laboratries, Department of Biological Sciences, University of Exeter, (Technical Note: 09/2005).

  • Cahill, T.A., Eldred, R.A., Barone, J.B., & Ashbaugh, L.L. (1979). Ambient aerosol sampling with stack filter units.

  • Callen, M.S., Cruz, M.T., López, J.M., Navarro, M.V., & Mastral, A.M. (2009). Comparison of receptor models for source apportionment of the P M 10 in Zaragoza (Spain). Chomesphere, 76, 1120–1129.

    Article  CAS  Google Scholar 

  • Chan, T.W., & Mozurkewich, M. (2007). Simplified representation of atmospheric aerosol size distributions using absolute principal component analysis. Atmospheric Chemistry and Physics, 7, 875–886.

    Article  CAS  Google Scholar 

  • Charkraborty, A., & Gupta, T. (2010). Chemical characterization and source apportionment of submicron (P M 1) aerosol in Kanpur Region, India. Aerosol and Air Quality Research, 10, 433–445.

    Google Scholar 

  • Chow, J.C., Lowenthal, D.H., Antony Chen, L.W., Wang, X., & Watson, J.G. (2015). Mass reconstruction methods for P M 25: a review. Air Quality and Atmospheric Health, 8, 243–263. doi:10.1007/s11869-015-0338-3.

    Article  CAS  Google Scholar 

  • Cohen, D.D., Garton, D., Stelcer, E., & Hawa, O. (2004). Accelerator based studies of atmospheric pollution process. Radiation Physics and Chemistry, 71, 759–767.

    Article  CAS  Google Scholar 

  • Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P.K., Webster, R.D., & Wang, X. (2015). Trace element composition of P M 2.5 and P M 10 from Kolkata- heavily polluted Indian metropolis. Atmospheric Pollution Research, 6, 742–750.

    Article  CAS  Google Scholar 

  • Davy, P.K., Gerelmaa, G., Markwitz, A., Trompetter, J.W., Barry, J.A., Shagjjamba, T., & Lodoysamba, S. (2011a). Air particulate matter pollution in Ulaanbaatar, Mongolia: determination of composition, source contributions and source locations. Atmospheric Pollution Research, 2, 126–137.

    Article  CAS  Google Scholar 

  • Davy, P.K., Trompetter, W.J., & Markwitz, A. (2011b). Concentration, composition and sources of particulate matter in the Johnstone’s Hill Tunnel, Auckland. Geological and Nuclear Science (GNS) Consultancy Report.

  • Dey, S., Gupta, S., & Uma, M. (2014). Study of particulate matter, heavy metals and gasoues pollutants at Gopalpur at tropical industrial site in eastern India. Journal of Environmental Science, Toxicology and Food Technology, 8(2), 1–13.

    Article  Google Scholar 

  • EMEP (2000). Status report with respect to measurement, modelling and emission of particulate matter: an intergrated approch. Emission, monitoring and measurement of particulate matter (EMEP) co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe, Kjeller, Norway.

  • EU (2014). European Union Air Quality Standard (EUAQS). http://ec.europa.eu/environment/air/quality/standards.htm.

  • Fornalczyk, A., Willer, J., Francuz, K., & Cebulski, J. (2013). E-waste as a source of valuable metals. World Academy of Materials and Manufacturing Engineering, 63(2), 87–92.

    Google Scholar 

  • Fujiwara, F.G., Gomez, D.R., Dawidowski, L., Perelman, P., & Faggi, A. (2011). Metals associated with airborne particulate matter in road dust and tree bark collected in a megacity (buenos aires, argentina). Ecological indicator, 11, 240–247.

    Article  CAS  Google Scholar 

  • Gladtke, D., Volkhausen, W., & Bach, B. (2009). Estimating the contribution of industrial facilities to annual P M 10 concentrations at industrially influenced sites. Atmospheric Environment, 43, 4655–4665.

    Article  CAS  Google Scholar 

  • Gugamsetty, B., Wei, H., Liu, C.N., Awasthi, A., Hsu, S.C., Tsai, C.J., Roam, G.D., Wu, Y.C., & Chen, C.F. (2012). Source characterization and apportionment of P M 10, P M 2.5 and P M 0.1 by using positive matrix factorization. Aerosol and Air Quality Research, 12, 476–491. ISSN 1680-8584 print/2071-1409 online.

    CAS  Google Scholar 

  • Gullet, B.K., Linak, W.P., Touati, A., Wasson, S.J., Gatica, S., & King, C.J. (2007). Characterization of air emissions and residual ash from open burning of elecronic wastes during simulated rudimentary reclying operationss. Journal of Material Cycle and Waste Management, 9, 69–79.

    Article  Google Scholar 

  • Gutknecht, W., Flanagan, J., McWilliam, A., Jayanty, R.K.M., Kellog, R., Rice, J., Duda, P., & Richard, H.S. (2010). Harmonization of uncertainty of x-ray florescence data for P M 2.5 air filter analysis. Journal of the Air and Waste Management Association, 60(2), 184–194.

    Article  CAS  Google Scholar 

  • Henry, R.C. (2003). Multivariate receptor modeling by N-dimensional edge detection. Chemometrics and Intelligent Laboratory Systems, 65, 179–189.

    Article  CAS  Google Scholar 

  • Hopke, P.K., Ying, X., Taisto, R., Steven, B., Landdsberger, S., Maenhaut, W., Artoxo, P., & Cohen, D.D. (1997). Characterization of gent stacked filter unit PM10 sampler. Aerosol Science and Technology, 27, 726–735.

    Article  CAS  Google Scholar 

  • Huang, J.Z., Ge, X.P., & Wang, D.S. (2012). Distribution of heavy metals in the water column, suspended particulate matters and the sediment under hydrodynamic conditions using an annular flume. Journal of Environmental Sciences, 24, 2051–2059.

    Article  CAS  Google Scholar 

  • Hutchison, G.R., Brown, D.M., Hibbs, L.R., Heal, M.R., Donaldson, K., Maynard, R.L., Monaghan, M., Nicholl, A., & Stone, V. (2005). The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation. Respiratory Research, 6, 622–632.

    Article  Google Scholar 

  • IRNA (2013). Effort to limit diesel fuel sulphur level. Report to congress on black carbon: international regulation and national agreement on diesel fuel suphur levels.

  • Ito, K., Christensen, W.F., Eatough, J.D., Henry, R.C., Kim, E., Laden, F., Lall, F., Larson, T.V., Neas, L., Hopke, P.K., & Thurston, G.D. (2006). PM source apportionment and health effects 2. An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. Journal of Exposure Science and Environmental Epidemiology, 16, 300–310.

    Article  CAS  Google Scholar 

  • Jones, J.A.T., Bowman, B., & Lefrank, P.A. (1998). Electric furnace steelmaking, in the making, shaping and treating of steel. The AISE Steel Foundation.

  • Kara, M., Hopke, P.K., Dumanoglu, Y., Altiok, H., Elbir, T., Obadasi, M., & Bayram, A. (2015). Characterization of PM using multiple site data in a heavily industralized region of Turkey. Aerosol and Air Quality Research, 15, 11–27.

    CAS  Google Scholar 

  • Kelly, K.E., Kotchenruther, R., Kuprov, R., & Silcox, G.D. (2013). Receptor model source attributions for Utah’s Salt Lake City airshed and the impact of wintertime secondary ammonium nitrate and ammonium chloride aerosol. Journal of Air and Waste Management Association, 63, 575–590.

    Article  CAS  Google Scholar 

  • Khodeir, M., Shamy, M., Alghamdi, M., Zhong, M., Sun, H., & Costa, M. (2012). Source apportionment and elemental composition of P M 2.5 and P M 10 in Jeddah city, Saudi Arabia. Atmospheric Pollution Research, 3, 331–340.

    Article  CAS  Google Scholar 

  • Kothai, P., Saradhi, I.V., Prathibha, P., Hopke, P.K., Pandit, G.G., & Puranik, V.D. (2008). Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aerosol and Air Quality Research, 8(4), 432–436.

    Google Scholar 

  • Larsen, R.K., & Baker, J.E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science and Technology, 37, 1873–1881.

    Article  CAS  Google Scholar 

  • Lee, H.J., Gent, J.F., Leaderer, B.P., & Koutrakis, P. (2011). Spatial and temporal variability in of fine composition and source types in 5 cities of Connecticut and Massachusetts. Science of Total Environment, 409, 2133–2142.

    Article  CAS  Google Scholar 

  • Lee, J.H., Jeong, J.H., & Lim, J.M. (2013). Toxic trace and earth crustal elements of the ambient P M 2.5 using CCT-CP-MS in an urban area of Korea. Environmental Engineering Research, 18(1), 3–8.

    Article  Google Scholar 

  • Lestiani, D.D., & Santoso, M. (2011). Analytical methods of INAA and PIXE applied to characterization od airborne particulate matter in Bandgund, Indonesia. Atmospheric Science, 37(2), 52–56.

    Google Scholar 

  • Lestiani, D.D., Santoso, M., Kurniawati, S., & Markwitz, A. (2013). Characteristic of airborne particulate matter samples collected from 2 semi industrial sites in Bandung, Indonesia. Indonesia Journal of Chemical Society, 13(3), 271–277.

    CAS  Google Scholar 

  • Lough, G.C., Christenson, C.C., Schauer, J.J., Tortorelli, J., Bean, E., Lawson, D., Clark, N.N., & Gabele, P.A. (2007). Development of molecular marker source profiles for emissions from on-road gasoline and diesel vehicle fleets. Atmospheric Environment, 57, 1190–1199.

    CAS  Google Scholar 

  • Maenhaut, W., Francois, F., & Cafmeyer, J.I. (1993). The gent stacked filter unit (SFU) sampler for collection of aerosols in two size fractions: description and instructions for installation and use applied research on air pollution using nuclear-related analytical techniques.

  • Malm, W.C., Schichtel, B.A., & Pitchford, M.L. (2001). Uncertainties in P M 2.5 gravimetric and speciation measurements and what we can learn from them. Journal of Air and Waste Managemenet Association, 61, 1131–1149.

    Google Scholar 

  • Marcazzan, G.M., Ceriani, M., Valli, G., & Vecchi, R. (2003). Source apportionment of P M 10 and P M 2.5 in Millan (Italy) using receptor modeling. Science of Total Environment, 317, 137–147.

    Article  CAS  Google Scholar 

  • Maykut, N.N., Lewtas, J., Kim, E., & Larson, T.V. (2003). Source apportionment of P M 2.5 at an Urban IMPROVE site in Seattle, Washington. Environmental Science and Technology, 37, 5135–5142.

    Article  CAS  Google Scholar 

  • Mazzei, F., D’Alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., & Vecchi, R. (2008). Characterization of particulate matter sources in urban environment. Science of Total Environment, 401, 81–89.

    Article  CAS  Google Scholar 

  • Mbengue, S., Alleman, L.Y., & Flament, P. (2014). Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in Northern France. Atmospheric Research, 135–136, 35–47.

    Article  Google Scholar 

  • Mohiuddin, K., Strezov, V., Nelson, P., & Stelcer, E. (2014). Characterisation of trace metals in atmospheric particles in the vicinity of iron and steelmaking industries in Australia. Atmospheric Environment, 83, 72–79.

    Article  CAS  Google Scholar 

  • Moreno, T., Querol, X., Alastuey, A., & Gibbons, W. (2008). Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols. Atmopsheric Environment, 42, 7851–7861.

    Article  CAS  Google Scholar 

  • Murillo, J.H., Roman, S.R., Marin, J.F.R., & Cardenas, B. (2013a). Source apportionment of P M 2.5 in the metropolitan area of Costa Rica, using receptor models. Atmospheric and Climate Science, 3, 562–575.

    Article  Google Scholar 

  • Murillo, J.H., Roman, S.R., Marin, J.F.R., Ramos, A.C., Jimenez, S.B., Gonazalez, B.C., & Baumgardner, D.B. (2013b). Chemical characterization and source apportionment of P M 10 and P M 2.5 in the metropolitan area of Costa Rica, Central America. Atmospheric Pollution Research, 4, 181–190.

    Article  Google Scholar 

  • NAAQS (2014). United State National Ambient Air Quality (NAAQS). http://epa.gov/air/crteria.html.

  • Norgate, T.E., Jahanshahi, S., & Rankin, W.J. (2007). Assesing the environmental impact of metal production processes. Journal of Clearner Production, 15(8-9), 838–848.

    Article  Google Scholar 

  • Norris, G.A., Vedantham, R., & Duvall, R.M. (2008). EPA UNMIX 6.0 fundamental and user guide.

  • Ofosu, G.F., Hopke, P.K., Aboh, I.J.K., & Bamford, S.A. (2012). Characterization of fine particulate sources at Ashaiman in Greater Accra, Ghana. Atmospheric Pollution Reaseach, 3, 301–310.

    Article  CAS  Google Scholar 

  • Ohimain, E.I. (2013). The challenge of domestic iron and steel production in Nigeria. Greener Journal of Business and Management Studies, 3(5), 231–240.

    Google Scholar 

  • Olise, F.S., Owoade, O.K., & Olaniyi, H.B. (2010a). An optimization of PIXE procedure for high - Z species in a lower Z matrix. Applied Radition and Isotopes, 68, 1030–1034.

    Article  CAS  Google Scholar 

  • Olise, F.S., Owoade, O.K., Olaniyi, H.B., & Obiajunwa, E.I. (2010b). A complementary tool in the determination of activity concentrations of naturally occuring radionuclides. Journal of Environmental Radioactivity, 101, 910–914.

    Article  CAS  Google Scholar 

  • Onat, B., Ulku, A.S., & Tanil, A. (2013). Elemental charcacterization of P M 2.5 and P M 1 in dense traffic area in Istanbul. Atmospheric Pollution Research, 4, 101–105.

    Article  CAS  Google Scholar 

  • Owoade, O.K., Hopke, P.K., Olise, F.S., Ogundele, L.T., Fawole, O.G., Olaniyi, H.B., Jegede, O.O., Ayoola, M.A., & Bashiru, M.I. (2015). Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5-10) from a scrap iron and steel smelting industry along the Ife-Ibadan highway, Nigeria. Atmopsheric Pollution Research, 6, 107–119.

    Article  CAS  Google Scholar 

  • Owoade, O.K., Olise, F.S., Obioh, I.B., Olaniyi, H.B., Bolzacchini, E., Ferrero, L., & Perrone, G. (2006). P M 10 sampler deposited air particulates: ascertaining uniformity of sample on filter through rotated exposure to radiation. Nuclear Instruments and Methods in Physics Research A, 564, 315–318.

    Article  CAS  Google Scholar 

  • Owoade, O.K., Olise, F.S., Obioh, I.B., Olaniyi, H.B., Ferrero, L., & Bolzacchini, E. (2009). EDXRF elemental assay of airborne particultes: a case study of an iron and steel indudtry, Lagos, Nigeria. Scienctific Research and Essay, 4(11), 1342–1347.

    Google Scholar 

  • Paatero, P. (1997). Least Squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory System, 37, 23–35.

    Article  CAS  Google Scholar 

  • Paatero, P., & Taaper, U. (1993). Analysis of different modes of factor analysis as least squares fit problem. Chemometrics and Intelligent Laboratory System, 18, 183–194.

    Article  CAS  Google Scholar 

  • Pandolfi, M., Viana, M.C., Minguillo, A., Querol, X., Alastuey, A., Amato, F., Celades, I., Escrig, A., & Monfort, A. (2008). Receptor models application to multi-year ambient P M 10 measurements in an industrialized ceramic area: comparison of source apportionment results. Atmospheric Environment, 42, 9007–9017.

    Article  CAS  Google Scholar 

  • Pant, P., & Harrison, R.M. (2012). Critical Review of receptor modeling for particulate matter: a case study of India. Atmospheric Environment, 49, 1–12.

    Article  CAS  Google Scholar 

  • Patil, R.S., Kumar, R., Menon, R., Shah, M.K., & Shethi, V. (2013). Development of particulate matter speciation profiles for major sources in 6 cities in India. Atmospheric Research, 132(3), 1–11.

    Article  Google Scholar 

  • Pokorna, P., Hovorka, J., Krouzek, J., & Hopke, P.K. (2013). Particulate matter source apportionment in a village situated in industrial region of Central Europe. Journal of the Air and Waste Management Association, 63(12), 1412–1421. doi:10.1080/10962247.2013.825215.

    Article  CAS  Google Scholar 

  • Polissar, A.V.., Hopke, P.K., & Piorot, R.I. (2001). Atmospheric aerosol over vermont: chemical composition and sources. Environmental Science and Technology, 35, 4604–4621.

    Article  CAS  Google Scholar 

  • Polissar, A.V., Hopke, P.K., & Paatero, P. (1998). Atmospheric aerosol over Alaska- 2 elemental composition and sources. Journal of Geophysical Research, 103, 19045–19057.

    Article  CAS  Google Scholar 

  • Querol, X., Viana, M., Alatuey, A., Amato, F., Moreno, T., Castilo, S., Pey, J., de la Rosa, J., Sanchez de la, A., Artinano, B., Salvador, P., Garcia, S., Fernandez-Patier, R., Moreno-Grau, S., Negral, L., Minguillon, M.C., Monfort, E., Gil, J.I., Inza, A., Ortega, L.A., Santamara, J.M., & Zabalza, J. (2007). Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment, 41, 7219–7231.

    Article  CAS  Google Scholar 

  • Raman, S., Hopke, P.K., & Holsen, T.M. (2008). Carbonaceous aerosol at two rural locations in New York State: characterization and Behavior. Journal of Geophysical Research - Atmosphere, 113(D12202), 1581–1602. doi:10.1029/2007JD009281.

  • Robinson, B.H. (2009). E-waste: an assessment of global production and environmental impacts. Science of Total Environment, 408, 183–191.

    Article  CAS  Google Scholar 

  • Santoso, M., Lestiani, D.D., Mukhtar, R., Hamonangan, E., Syafrul, H., Markwitz, A., & Hopke, P.K. (2011). Preliminary study of the sources of ambient air pollution in Serpong, Indonesia. Atmospheric Pollution Research, 2, 190–196.

    Article  CAS  Google Scholar 

  • Saxena, M., Sudhir, K.S., Tuhin, K.M., Sachchidanand, S., & Trailokya, S. (2014). Source apportionment of particulates by receptor models over Bay of Bengal during ICARB campaign. Atmospheric Pollution Research, 5, 729–740.

    Article  CAS  Google Scholar 

  • Schofield, M.J., Hodges, J., Horne, A., & Anderson, D.A. (2007). Characterisation of fine and ultrafine particles from steelmaking processes. Presentation at ATS International Steelmaking, Conference, Paris.

  • Shaffer, C.R. (2012). Analysis of Ni and V in diesel fuel oils with thermo scientific ARL PerformX series. Advance X-ray flourescene Spectrometers, 1–2.

  • Song, Y., Wei, D., Min, S., Ying, L., Sihua, L., William, K., & Paul, G. (2008). Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environmental Pollution, 156, 174–183.

    Article  CAS  Google Scholar 

  • Song, Y., Xie, S.D., Zhang, Y.H., Zeng, L.M., Salmon, L.G., & Zheng, M. (2006a). Source apportionment of P M 2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Science of Total Environment, 372, 278–286.

    Article  CAS  Google Scholar 

  • Song, Y., Yuanhang, Z., Shaodong, X., Limin, Z., Zheng, M., Lynn, G., Salmon, M.S., & Sjack, S. (2006b). Source apportionment of P M 2.5 in Beijing by positive matrix factorization. Atmospheric Environment, 40, 1526–1537.

    Article  CAS  Google Scholar 

  • Srimuruganandam, B., & Nagenrda, S.M.S. (2012). Application of positive matrix factorization in characterization of P M 10 and P M 2.5 emission sources at urban roadside. Chemosphere, 88, 120–130.

    Article  CAS  Google Scholar 

  • Stone, E., Schaurel, J., Qurashi, T.A., & Mahmood, A. (2010). Chemical characterization of and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmospheric environment, 44, 1062–1070.

    Article  CAS  Google Scholar 

  • Tainio, M., Juda-Rezler, K., Reizer, M., Warchaowski, A., Trapp, W., & Skotak, K. (2013). Future climate and adverse health effects caused by fine particulate matter air pollution: case study for Poland. Regional Environment Change, 13, 705–715.

    Article  Google Scholar 

  • Taiwo, A.M., Beddows, D.C.S., Calzolai, G., Harrison, R.M., Lucarelli, F., Nava, S., Shi, Z., Valli, G., & Vecchi, R.M. (2014). Receptor modelling of airborne particulate matter in the viccinity of a major steelworks site. Science of Total Environment, 490, 488–500.

    Article  CAS  Google Scholar 

  • Thurston, G.D., Ito, K., & Lall, R. (2011). A source apportionment of US fine particulate matter air pollution. Atmospheric Environment, 45(24), 3924–3936.

    Article  CAS  Google Scholar 

  • Tian, H., Cheng, K., Wang, Y., Zhao, D., Lu, L., Jia, W., & Hao, J. (2012). Temporal and spatial variation characteristic of atmospheric emission of Cd, Cr, and Pb from coal in China. Atmospheric Environment, 50, 157–163.

    Article  CAS  Google Scholar 

  • Tijjani, N., Ike, P.O., Usman, B.B., Malami, D.I., & Matholo, A. (2012). Trace elemental analysis of nigerian petroleum products using AAS method. International Journal of Scientific and Engineering Research, 3(2), 1–5.

    Google Scholar 

  • USEPA (2004). Air quality criteria for particulate matter. EPA 600/P-99/002bF, National Center for Environmental Assessment, Office of Research and Development, Research Triangle Park, NC.

  • USEPA (2009). Assessing the management of lead in scrap metal and electric arc furnace dust. US EPA Office of Resources Conservation and Recovery.

  • Valiulis, D., Sakalys, J., & Pluaskaite, K. (2008). Heavy metal penetration into the human respiratory tract in Valiulis. Journal of Physical Science, 48, 23–34.

    Google Scholar 

  • Watson, J.G., Chow, J.C., & Fujita, E.M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment, 35, 1567–1584.

    Article  CAS  Google Scholar 

  • WHO (2013). Health effects of particulate matter. WHO Regional Office for Europe, UN City, DK-400 Copenhagen, Denmark.

  • Yadav, S., & Satsangi, P.G. (2013). Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environmental Monitoring and Assessment, 185, 7365–7379.

    Article  CAS  Google Scholar 

  • Yang, H.H., Lee, K.T., Hsieh, Y.S., Luo, S.W., & Huang, L.J. (2015). Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants. Aerosol and Air Quality Reaserch, 15, 1672–1680. doi:10.4209/aaqr2015060398.

    CAS  Google Scholar 

  • Yatkin, S., & Bayram, A. (2008). Source apportionment of P M 10 and P M 2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Science of Total Environment, 390, 109–123.

    Article  CAS  Google Scholar 

  • Yin, J.X., Harrison, R.M., Chen, Q., Rutter, A., & Schauer, J.J. (2010). Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmospheric Environment, 44, 841– 851.

    Article  CAS  Google Scholar 

  • Zanobetti, A., & Schwartz, J. (2009). The effect of fine and coarse particulate air pollution on mortality: a national analysis. Environment Health Perspectives, 117, 898–905.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the Centre for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA for the facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix S. Olise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogundele, L.T., Owoade, O.K., Olise, F.S. et al. Source identification and apportionment of PM2.5 and PM2.5−10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. Environ Monit Assess 188, 574 (2016). https://doi.org/10.1007/s10661-016-5585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5585-8

Keywords

Navigation