Skip to main content
Log in

Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The concentrations of rare earth elements (REE), measured in water samples from Atibaia River and its tributary Anhumas Creek, Brazil, present excess of dissolved gadolinium. Such anthropogenic anomalies of Gd in water, already described in other parts of the world, result from the use of stable and soluble Gd chelates as contrast agents in magnetic resonance imaging. Atibaia River constitutes the main water supply of Campinas Metropolitan area, and its basin receives wastewater effluents. The REE concentrations in water samples were determined in 0.22-μm pore size filtered samples, without and after preconcentration by solid-phase extraction with bis-(2-ethyl-hexyl)-phosphate. This preconcentration method was unable to retain the anthropogenic Gd quantitatively. The probable reason is that the Gd chelates dissociate slowly in acidic media to produce the free ion that is retained by the phosphate ester. Strong correlations between Gd and constituents or parameters associated with effluents confirmed the source of most Gd in water samples as anthropogenic. The shale-normalized REE patterns of Atibaia River and Anhumas Creek water samples showed light and heavy REE enrichment trends, respectively. Also, positive Ce anomalies in many Atibaia River samples, as well as the strong correlations of the REE (except Gd) with terrigenous elements, imply that inorganic colloidal particles contributed to the REE measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agência PCJ (2006). Report on the situation of water resources 2007: UGRHI 05—Watersheds of Piracicaba, Capivari and Jundiaí Rivers (in potuguese). São Paulo.

  • Bau, M. (1999). Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63, 67–77. doi:10.1016/S0016-7037(99)00014-9.

    Article  CAS  Google Scholar 

  • Bau, M., & Dulski, P. (1996). Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Science Letters, 143, 245–255. doi:10.1016/0012-821X(96)00127-6.

    Article  CAS  Google Scholar 

  • Birka, M., Wehe, C. A., Telgmann, L., Sperling, M., & Karst, U. (2013). Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry. Journal of Chromatography. A, 1308, 125–131. doi:10.1016/j.chroma.2013.08.017.

    Article  CAS  Google Scholar 

  • Bulia, I. L., & Enzweiler, J. (2015). Rare earth elements and uranium in groundwater under influence of distinct aquifers in Campinas (SP). Águas Subterrâneas, 29, 224–243. doi:10.14295/ras.v29i2.28409.

    Article  Google Scholar 

  • Butterwick, L., de Oude, N., & Raymond, K. (1989). Safety assessment of boron in aquatic and terrestrial environments. Ecotoxicology and Environmental Safety, 17, 339–371. doi:10.1016/0147-6513(89)90055-9.

    Article  CAS  Google Scholar 

  • Campos, F. F., & Enzweiler, J. (2013). Gadolinium anomalies in Atibaia River water (SP, Brazil)—Goldschmidt Abstracts 2013. Mineralogical Magazine, 77, 815. doi:10.1180/minmag.2013.077.5.3.

    Google Scholar 

  • Campos, F.F., Enzweiler, J., (2014). Anthropogenic gadolinium anomalies and distribution of rare earth elements in Atibaia River and Anhumas Creek waters (São Paulo, Brazil). Master thesis. Campinas.

  • CETESB (2004). Diagnosis and new ways of environmental management for the region of Paulinia (in Portuguese). São Paulo.

  • Cotta, A. J. B., & Enzweiler, J. (2012). Classical and new procedures of whole rock dissolution for trace element determination by ICP-MS. Geostandards and Geoanalytical Research, 36, 27–50. doi:10.1111/j.1751-908X.2011.00115.x.

    Article  CAS  Google Scholar 

  • Daniel, M. H. B., Montebelo, A. A., Bernardes, M. C., Ometto, J. P. H. B., de Camargo, P. B., Krusche, A. V., Ballester, M. V., Victoria, R. L., & Martinelli, L. A. (2002). Effects of urban sewage on dissolved oxygen, dissolved inorganic and organic, and electrical conductivity of small streams along a gradient of urbanization in the Piracicaba River Basin. Water, Air, and Soil Pollution, 136, 189–206.

    Article  CAS  Google Scholar 

  • Deberdt, S., Viers, J., & Dupré, B. (2002). New insights about the rare earth elements (REE) mobility in river waters. Bulletin de la Societe Geologique de France, 173, 147–160. doi:10.2113/173.2.147.

    Article  CAS  Google Scholar 

  • Elbaz-Poulichet, F., Seidel, J. L., & Othoniel, C. (2002). Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Research, 36, 1102–1105. doi:10.1016/S0043-1354(01)00370-0.

    Article  CAS  Google Scholar 

  • Elderfield, H., & Greaves, M. J. (1982). The rare earth elements in seawater. Nature, 296, 214–219.

    Article  CAS  Google Scholar 

  • Elderfield, H., Upstill-Goddard, R., & Sholkovitz, E. R. (1990). The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta, 54, 971–991. doi:10.1016/0016-7037(90)90432-K.

    Article  CAS  Google Scholar 

  • Everett, D. H. (1972). Manual of symbols and terminology for physicochemical quantities and units, Appendix II: definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry, 31, 577–638. doi:10.1351/pac197231040577.

    Article  Google Scholar 

  • Francisco, C.E. da S., (2006). Permanent preservation areas in the watershed of Anhumas Creek: establishing priorities in the recovery by multi-criteria analysis (in Portuguese). Campinas: Instituto Agronômico de Campinas.

  • Gaillardet, J., Viers, J., Dupré, B., (2014). Trace elements in river waters. In H. Holland, K. Turekian (Eds.), Treatise on geochemistry (second edition). pp. 195–235. doi:10.1016/B978-0-08-095975-7.09879-X.

  • Goldstein, S. J., & Jacobsen, S. B. (1988). Rare earth elements in river waters. Earth and Planetary Science Letters, 89, 35–47. doi:10.1016/0012-821X(88)90031-3.

    Article  CAS  Google Scholar 

  • Gonzalez, V., Vignati, D. A. L., Leyval, C., & Giamberini, L. (2014). Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry? Environment International, 71, 148–157. doi:10.1016/j.envint.2014.06.019.

    Article  CAS  Google Scholar 

  • Gurumurthy, G. P., Balakrishna, K., Tripti, M., Audry, S., Riotte, J., Braun, J. J., & Udaya Shankar, H. N. (2014). Geochemical behaviour of dissolved trace elements in a monsoon-dominated tropical river basin, southwestern India. Environmental Science and Pollution Research, 21, 5098–5120. doi:10.1007/s11356-013-2462-7.

    Article  CAS  Google Scholar 

  • Hennebrüder, K., Wennrich, R., Mattusch, J., Stärk, H.-J., & Engewald, W. (2004). Determination of gadolinium in river water by SPE preconcentration and ICP-MS. Talanta, 63, 309–316. doi:10.1016/j.talanta.2003.10.053.

    Article  Google Scholar 

  • Idée, J.-M., Port, M., Robic, C., Medina, C., Sabatou, M., & Corot, C. (2009). Role of thermodynamic and kinetic parameters in gadolinium chelate stability. Journal of Magnetic Resonance Imaging, 30, 1249–1258. doi:10.1002/jmri.21967.

    Article  Google Scholar 

  • Katsoyiannis, A., & Samara, C. (2007). The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Environmental Science and Pollution Research, 14, 284–292. doi:10.1065/espr2006.05.302.

    Article  CAS  Google Scholar 

  • Knappe, A., Möller, P., Dulski, P., & Pekdeger, A. (2005). Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Chemie der Erde - Geochemistry, 65, 167–189. doi:10.1016/j.chemer.2004.08.004.

    Article  CAS  Google Scholar 

  • Kraemer, D., Kopf, S., & Michael Bau, M. (2015). Oxidative mobilization of cerium and uranium and enhanced release of “immobile” high field strength elements from igneous rocks in the presence of the biogenic siderophore desferrioxamine B. Geochimica et Cosmochimica Acta, 165, 263–279. doi:10.1016/j.gca.2015.05.046.

    Article  CAS  Google Scholar 

  • Kulaksız, S., & Bau, M. (2007). Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth and Planetary Science Letters, 260, 361–371. doi:10.1016/j.epsl.2007.06.016.

    Article  Google Scholar 

  • Kulaksız, S., & Bau, M. (2011a). Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities. Applied Geochemistry, 26, 1877–1885. doi:10.1016/j.apgeochem.2011.06.011.

    Article  Google Scholar 

  • Kulaksız, S., & Bau, M. (2011b). Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environment International, 37, 973–979. doi:10.1016/j.envint.2011.02.018.

    Article  Google Scholar 

  • Kulaksız, S., & Bau, M. (2013). Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth and Planetary Science Letters, 362, 43–50. doi:10.1016/j.epsl.2012.11.033.

    Article  Google Scholar 

  • Künnemeyer, J., Terborg, L., Nowak, S., Brauckmann, C., Telgmann, L., Albert, A., et al. (2009). Quantification and excretion kinetics of a magnetic resonance imaging contrast agent by capillary electrophoresis-mass spectrometry. Electrophoresis, 30, 1766–1773. doi:10.1002/elps.200800831.

    Article  Google Scholar 

  • Lanaro, R., Capitani, E. M., Costa, J. L., Bucaretchi, F., Togni, L., Linden, R., Barbosa, F., Tessaro, E. P., Bataglion, G. A., Eberlin, M. N., Zappa, J. E. B., Almeida, L. C., Kemp, B., & Miller, J. R. (2014). Sudden deaths due to accidental intravenous injection of perfluorocarbon during MRI cranial examinations. Forensic Toxicology, 32, 323–330. doi:10.1007/s11419-014-0231-z.

    Article  Google Scholar 

  • Lawrence, M. G., Greig, A., Collerson, K. D., & Kamber, B. S. (2006). Rare earth element and yttrium variability in South East Queensland waterways. Aquatic Geochemistry, 12, 39–72. doi:10.1007/s10498-005-4471-8.

    Article  CAS  Google Scholar 

  • Lead, J. R., & Wilkinson, K. J. (2006). Aquatic colloids and nanoparticles: current knowledge and future trends. Environment and Chemistry, 3, 159–171. doi:10.1071/EN06025.

    Article  CAS  Google Scholar 

  • Leleyter, L., Probst, J.-L., Depetris, P., Haida, S., Mortatti, J., Rouault, R., & Samuel, J. (1999). REE distribution pattern in river sediments: partitioning into residual and labile fractions labile fractions. Comptes Rendus de l’Académie des Sciences - Series IIA - Earth and Planetary Science, 329, 45–52. doi:10.1016/S1251-8050(99)80226-2.

    CAS  Google Scholar 

  • Martinelli, L. A., Krusche, A. V., Vicgoria, R. L., Camargo, P. B., Bernardes, M., Ferraz, E. S., Moraes, J. M., & Ballester, M. V. (1999). Effects of sewage on the chemical composition of Piracicaba River, Brazil. Water, Air, and Soil Pollution, 110, 67–79. doi:10.1023/A:1005052213652.

    Article  CAS  Google Scholar 

  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21, 169–200.

    CAS  Google Scholar 

  • Merschel, G., & Bau, M. (2015). Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. Science of the Total Environment, 533, 91–101. doi:10.1016/j.scitotenv.2015.06.042.

    Article  CAS  Google Scholar 

  • Merschel, G., Bau, M., Baldewein, L., Dantas, E. L., Walde, D., & Bühn, B. (2015). Tracing and tracking wastewater-derived substances in freshwater lakes and reservoirs: anthropogenic gadolinium and geogenic REEs in Lake Paranoá, Brasilia. Comptes Rendus Geoscience, 347, 284–293. doi:10.1016/j.crte.2015.01.004.

    Article  Google Scholar 

  • Moffett, J. W. (1990). Microbially mediated cerium oxidation in sea water. Nature, 345, 421–423. doi:10.1038/345421a0.

    Article  CAS  Google Scholar 

  • Möller, P., & Bau, M. (1993). Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth and Planetary Science Letters, 117, 671–676. doi:10.1016/0012-821X(93)90110-U.

    Article  Google Scholar 

  • Möller, P., Knappe, A., & Dulski, P. (2014). Seasonal variations of rare earths and yttrium distribution in the lowland Havel River, Germany, by agricultural fertilization and effluents of sewage treatment plants. Applied Geochemistry, 41, 62–72. doi:10.1016/j.apgeochem.2013.11.011.

    Article  Google Scholar 

  • Morcos, S. K. (2008). Extracellular gadolinium contrast agents: differences in stability. European Journal of Radiology, 66, 175–179. doi:10.1016/j.ejrad.2008.01.025.

    Article  CAS  Google Scholar 

  • Nelson, B. J., Wood, S. A., & Osiensky, J. L. (2003). Partitioning of REE between solution and particulate matter in natural waters: a filtration study. Journal of Solid State Chemistry, 171, 51–56. doi:10.1016/S0022-4596(02)00145-7.

    Article  CAS  Google Scholar 

  • Pédrot, M., Dia, A., Davranche, M., & Gruau, G. (2015). Upper soil horizons control the rare earth element patterns in shallow groundwater. Geoderma, 239–240, 84–96. doi:10.1016/j.geoderma.2014.09.023.

    Article  Google Scholar 

  • Perrota, M.M., Salvador, E.D., Lopes, R.C., D’Agostino, L.Z., Peruffo, N., Gomes, S.D. et al. (2005). Geological map of the State of São Paulo, scale 1:750.000 (in Portuguese). São Paulo.

  • Pourret, O., Davranche, M., Gruau, G., & Dia, A. (2008). New insights into cerium anomalies in organic-rich alkaline waters. Chemical Geology, 251, 120–127. doi:10.1016/j.chemgeo.2008.03.002.

    Article  CAS  Google Scholar 

  • Raju, C. S. K., Lück, D., Scharf, H., Jakubowski, N., & Panne, U. (2010). A novel solid phase extraction method for pre-concentration of gadolinium and gadolinium based MRI contrast agents from the environment. Journal of Analytical Atomic Spectrometry, 25, 1573–1580. doi:10.1039/c003251d.

    Article  Google Scholar 

  • Ramsey, M.H. (1997). How to estimate analytical precision. In R. Gill (Ed.), Modern analytical geochemistry. Longman, p. 9.

  • Rofsky, N. M., Sherry, D. A., & Lenkinski, R. E. (2008). Nephrogenic systemic fibrosis: a chemical perspective. Radiology, 247, 608–612. doi:10.1148/radiol.2473071975.

    Article  Google Scholar 

  • SANASA (2014). General data (wastewater treatment plants), Society for the Supply of Water and Sanitation (in Portuguese). Available at: http://www.sanasa.com.br/conteudo/conteudo2.aspx?f=I&par_nrod=572&flag=TS. Accessed Nov 2015.

  • Shabani, M. B., Akagi, T., & Masuda, A. (1992). Preconcentration of trace rare-earth elements in seawater by complexation with bis(2-ethylhexyl) hydrogen phosphate and 2-ethylhexyl dihydrogen phosphate adsorbed on a C18 cartridge and determination by inductively coupled plasma mass spectrometry. Analytical Chemistry, 64, 737–743. doi:10.1021/ac00031a008.

    Article  CAS  Google Scholar 

  • Sholkovitz, E. R. (1992). Chemical evolution of rare earth elements: fractionation between colloidal and solution phases of filtered river water. Earth and Planetary Science Letters, 114, 77–84. doi:10.1016/0012-821X(92)90152-L.

    Article  CAS  Google Scholar 

  • Smedley, P. L. (1991). The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England. Geochimica et Cosmochimica Acta, 55, 2767–2779.

    Article  CAS  Google Scholar 

  • Steinmann, M., & Stille, P. (2008). Controls on transport and fractionation of the rare earth elements in stream water of a mixed basaltic-granitic catchment basin (Massif Central, France). Chemical Geology, 254, 1–18. doi:10.1016/j.chemgeo.2008.04.004.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1981). Aquatic chemistry (2nd ed.). New York: Wiley.

    Google Scholar 

  • Tan, X., Ren, X., Chen, C., & Wang, X. (2014). Analytical approaches to the speciation of lanthanides at solid-water interfaces. Trends in Analytical Chemistry, 61, 107–132. doi:10.1016/j.trac.2014.06.010.

    Article  CAS  Google Scholar 

  • Tepe, N., & Bau, M. (2014). Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland. Science of the Total Environment, 488–489, 243–251. doi:10.1016/j.scitotenv.2014.04.083.

    Article  Google Scholar 

  • Tricca, A., Stille, P., Steinmann, M., Kiefel, B., Samuel, J., & Eikenberg, J. (1999). Rare earth elements and Sr and Nd isotopic compositions of dissolved and suspended loads from small river systems in the Vosges mountains (France), the river Rhine and groundwater. Chemical Geology, 160, 139–158. doi:10.1016/S0009-2541(99)00065-0.

    Article  CAS  Google Scholar 

  • Wang, X., Jin, T., Comblin, V., Lopez-Mut, A., Merciny, E., & Desreux, J. F. (1992). A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylic MRI contrast agent. Inorganic Chemistry, 31, 1095–1099. doi:10.1021/ic00032a034.

    Article  CAS  Google Scholar 

  • Yeghicheyan, D., Carignan, J., Valladon, M., Coz, M. B., Cornec, F. L., Castrec-Rouelle, M., et al. (2001). A compilation of silicon and thirty one trace elements measured in the natural river water reference material SLRS-4 (NRC-CNRC). Geostandards and Geoanalytical Research, 25, 465–474. doi:10.1111/j.1751-908X.2001.tb00617.x.

    Article  CAS  Google Scholar 

  • Yeghicheyan, D., Bossy, C., Bouhnik LeCoz, M., Douchet, C., Granier, G., Heimburger, A., Lacan, F., Lanzanova, A., Rousseau, T. C. C., Seidel, J. L., Tharaud, M., Candaudap, F., Chmeleff, J., Cloquet, C., Delpoux, S., & Labatut, M. (2013). A compilation of silicon, rare earth element and twenty-one other trace element concentrations in the natural river water reference material SLRS-5 (NRC-CNRC). Geostandards and Geographical Research, 37, 449–467. doi:10.1111/j.1751-908X.2013.00232.x.

    Article  CAS  Google Scholar 

  • Zhang, C., Wang, L., Zhang, S., & Li, X. (1998). Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Applied Geochemistry, 13, 451–462. doi:10.1016/S0883-2927(97)00079-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

FFC and JE acknowledge, respectively, a scholarship (Proc. Nr. 2012/02486-5) and a research grant (Proc. Nr. 2012/05024-2) from São Paulo Research Foundation (FAPESP). JE acknowledges the National Council for Scientific and Technological Development (CNPq) for scholarship grants (Proc. Nr. 306275/2009-0 and 312507/2013-5). The authors are responsible for the content of this paper. The authors are grateful to Prof. Dr. Michael Bau and his group for receiving FFC in his laboratory and generously teaching him the essentials of the REE preconcentration procedure. The authors thank Dr. Cleonice Rocha for providing the DOC analytical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacinta Enzweiler.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Human and animal rights and informed consent

The research did not involve human participants and/or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Campos, F.F., Enzweiler, J. Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil. Environ Monit Assess 188, 281 (2016). https://doi.org/10.1007/s10661-016-5282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5282-7

Keywords

Navigation