Skip to main content
Log in

Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of mercury in water and food samples employing cold vapor atomic absorption spectrometry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We describe a nanosized Hg(II)-imprinted polymer that was prepared from methacrylic acid as functional monomer, ethyleneglycol dimethacrylate as cross-linker, 2,2′-azobisisobutyronitrile (AIBN) as radical initiator, 2, 2′-di pyrydyl amine as a specific ligand, and Hg (II) as the template ions by precipitation polymerization method in methanol as the progeny solvent. Batch adsorption experiments were carried out as a function of pH, Hg (II) imprinted polymer amount, adsorption and desorption time, volume, and concentration of eluent. The synthesized polymer particles were characterized physically and morphologically by using infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopic techniques. The maximum adsorption capacity of the ion-imprinted and non-imprinted sorbent was 27.96 and 7.89 mg g−1, respectively. Under optimal conditions, the detection limit for mercury was 0.01 μg L−1 and the relative standard deviation was 3.2 % (n = 6) at the 1.00 μg L−1. The procedure was applied to determination of mercury in fish and water samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi, S., Roushani, M., Khani, H. A., Sahraei, R., & Mansouri, G. (2015). Synthesis and application of ion-imprinted polymer nanoparticles for the determination of nickel ions. Spectrochimica Acta A, 140, 534–543.

    Article  CAS  Google Scholar 

  • Adlnasab, L., Ebrahimzadeh, H., Asgharinezhad, A. A., Nasiri Aghdam, M., Dehghani, A., & Esmaeilpour, S. (2014). A preconcentration procedure for determination of ultra-trace mercury (II) in environmental samples employing continuous-flow cold vapor atomic absorption spectrometry. Food Analytical Methods, 7, 616–628.

    Article  Google Scholar 

  • Andac, M., Mirel, S., Senel, S., Say, R., Ersoz, A., & Denizli, A. (2007). Ion-imprinted beads for molecular recognition based mercury removal from human serum. International Journal of Biological Macromolecules, 40, 159–166.

    Article  CAS  Google Scholar 

  • Batlokwa, B. S., Chimuka, L., Tshentu, Z., Cukrowska, E., & Torto, N. (2012). An ion-imprinted polymer for the selective extraction of mercury (II) ions in aqueous media. Water SA, 38, 255–260.

    Article  CAS  Google Scholar 

  • Behbahani, M., Taghizadeh, M., Bagheri, A., Hosseini, H., Salarian, M., & Tootoonchi, A. (2012). A nanostructured ion-imprinted polymer for the selective extraction and preconcentration of ultra-trace quantities of nickel ions. Microchimica Acta, 178, 429–437.

    Article  CAS  Google Scholar 

  • Behbahani, M., Salarian, M., Bagheri, A., Tabani, H., Omidi, F., & Fakhari, A. (2014). Synthesis, characterization and analytical application of Zn(II)-imprinted polymer as an efficient solid-phase extraction technique for trace determination of zinc ions in food samples. Journal of Food Composition and Analysis, 34, 81–89.

    Article  CAS  Google Scholar 

  • Buyuktiryakis, S., Say, R., Denizli, A., & Ersoz, A. (2007). Mimicking receptor for methylmercury preconcentration based on ion-imprinting. Talanta, 71, 699–705.

    Article  Google Scholar 

  • Dakova, I., Karadjova, I., Georgieva, V., & Georgiev, G. (2009). Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury. Talanta, 78, 523–529.

    Article  CAS  Google Scholar 

  • Dakova, I., Yordanova, T., & Karadjova, I. (2012). Non-chromatographic mercury speciation and determination in wine by new core-shell ion-imprinted sorbents. Journal of Hazardous Materials, 231–232, 49–56.

    Article  Google Scholar 

  • Daniel, S., Rao, P., & Rao, T. P. (2005). Investigation of different polymerisation methods on the analytical performance of palladium (II) ion imprinted polymer materials. Analytica Chimica Acta, 536, 197–206.

    Article  CAS  Google Scholar 

  • Dehno Khalaji, D., Mehrani, S., Eigner, V., & Dusek, M. (2013). Synthesis, experimental and theoretical studies on its crystal structure and FT-IR spectrum of new thiosemicarbazone compound E-2-(4-isopropylbenzylidene)thiosemicarbazone. Journal of Molecular Structure, 1047, 87–94.

    Article  Google Scholar 

  • Ebrahimzadeh, H., Behbahani, M., Yamini, Y., Adlnasab, L., & Asgharinezhad, A. A. (2013). Optimization of Cu(II)-ion imprinted nanoparticles for trace monitoring of copper in water and fish samples using a Box–Behnken design. Reactive & Functional Polymers, 73, 23–29.

    Article  CAS  Google Scholar 

  • EPA (Environmental Protection Agency, United States) (2001). Mercury update: Impact of fish advisories. In: EPA Fact Sheet EPA823-F-01-011, Office of Water, USEPA, Washington, DC.

  • Fan, Z. (2006). Hg (II)-imprinted thiol-functionalized mesoporous sorbent micro-column preconcentration of trace mercury and determination by inductively coupled plasma optical emission spectrometry. Talanta, 70, 1164–1169.

    Article  CAS  Google Scholar 

  • Firouzzare, M., & Wang, Q. (2012). Synthesis and characterization of a high selective mercury (II)-imprinted polymer using novel aminothiol monomer. Talanta, 101, 261–266.

    Article  CAS  Google Scholar 

  • Ghaedi, M., Ahmadi, F., & Shokrollahi, A. (2007). Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. Journal of Hazardous Materials, 142, 272–278.

    Article  CAS  Google Scholar 

  • Hayes, R. B. (1997). The carcinogenicity of metals in humans. Cancer Causes and Control, 8, 371–385.

    Article  CAS  Google Scholar 

  • He, Q., Chang, X. J., Zheng, H., Jiang, N., Hu, Z., & Wang, X. Y. (2008). Determination of chromium (III) and total chromium in natural waters using a surface ion-imprinted silica gel as selective adsorbent. International Journal of Environmental Analytical Chemistry, 88, 373–384.

    Article  CAS  Google Scholar 

  • Huang, X., Liao, X., & Shi, B. (2009). Hg (II) removal from aqueous solution by bayberry tannin-immobilized collagen fiber. Journal of Hazardous Materials, 170, 1141–1148.

    Article  CAS  Google Scholar 

  • Jones, P., & Hardy, S. (1997). Development of a capillary electrophoretic method for the separation and determination of trace inorganic and organomercury species utilizing the formation of highly absorbing water soluble dithizone sulphonate complexes. Journal of Chromatography A, 765, 345–352.

    Article  CAS  Google Scholar 

  • Kalate Bojdi, M., Behbahani, M., Sahragard, A., Golrokh Amin, B., Fakhari, A., & Bagheri, A. (2014). A palladium imprinted polymer for highly selective and sensitive electrochemical determination of ultra-trace of palladium ions. Electrochimica Acta, 149, 108–116.

    Article  Google Scholar 

  • Kalate Bojdi, M., Behbahani, M., Najafi, M., Bagheri, A., Omidi, F., & Salimi, S. (2015). Selective and sensitive determination of uranyl ions in complex matrices by ion imprinted polymers-based electrochemical sensor. Electroanalysis, 27, 1–11.

    Article  Google Scholar 

  • Leopold, L., Foulkes, M., & Worsfold, P. G. (2010). Methods for the determination and speciation of mercury in natural waters—a review. Analytica Chimica Acta, 663, 127–138.

    Article  CAS  Google Scholar 

  • Li, S. X., Zheng, F. Y., Cai, S. J., & Cai, T. S. (2011). Determination of mercury and selenium in herbal medicines and hair by using a nanometer TiO2-coated quartz tube atomizer and hydride generation atomic absorption spectrometry. Journal of Hazardous Materials, 189, 609–613.

    Article  CAS  Google Scholar 

  • Lin, M. L., & Jiang, S. J. (2013). Determination of as Cd, Hg and Pb in herbs using slurry sampling electrothermal vaporisation inductively coupled plasma mass spectrometry. Food Chemistry, 141, 2158–2162.

    Article  CAS  Google Scholar 

  • Liu, Y., Changa, X., Yang, D., Guob, Y., & Meng, S. (2005). Highly selective determination of inorganic mercury (II) after preconcentration with Hg(II)-imprinted diazoaminobenzene–vinylpyridine copolymers. Analytica Chimica Acta, 538, 85–91.

    Article  CAS  Google Scholar 

  • Locatelli, C., & Melucci, D. (2012). Voltammetric determination of ultra-trace total mercury and toxic metals in meals. Food Chemistry, 130, 460–466.

    Article  CAS  Google Scholar 

  • Molochnikov, L. S., Kovalyova, E. G., Zagorodni, A. A., Muhammed, M., Sultanov, Y. M., & Efendiev, A. A. (2003). Coordination of Cu (II) and Ni(II) in polymers imprinted so as to optimize amine chelate formation. Polymer, 44, 4805–4815.

    Article  CAS  Google Scholar 

  • Moreda-Pińeiro, J., López-Mahıa, P., Muniategui-Lorenzo, S., Fernández-Fernández, E., & Prada-Rodrıguez, D. (2002). Direct as, Bi, Ge, Hg and Se (IV) cold vapor/hydride generation from coal fly ash slurry samples and determination by electrothermal atomic absorption spectrometry. Spectrochimica Acta B, 57, 883–895.

    Article  Google Scholar 

  • Najafi, E., Aboufazeli, F., Lotfi Zadeh Zhad, H. R., Sadeghi, O., & Amani, V. (2013). A novel magnetic ion imprinted nano-polymer for selective separation and determination of low levels of mercury (II) ions in fish samples. Food Chemistry, 141, 4040–4045.

    Article  CAS  Google Scholar 

  • O’Meara, J. M., Brjesson, J., & Chettle, D. R. (2000). Improving the in vivo X-ray fluorescence (XRF) measurement of renal mercury. Applied Radiation and Isotopes, 53, 639–646.

    Article  Google Scholar 

  • Rajabi, H. R., Shamsipur, M., & Pourmortazavi, S. M. (2013). Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K+ ion in different water samples. Materials Science and Engineering C, 33, 3374–3381.

    Article  CAS  Google Scholar 

  • Roushani, M., Abbasi, S., & Khani, H. (2015). Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of copper ions in environmental water samples. Environmental Monitoring and Assessment, 187, 219–232.

    Article  Google Scholar 

  • Safavi, A., Maleki, N., & Doroodmand, M. M. (2010). Fabrication of a selective mercury sensor based on the adsorption of cold vapor of mercury on carbon nanotubes: determination of mercury in industrial wastewater. Journal of Hazardous Materials, 173, 622–629.

    Article  CAS  Google Scholar 

  • Shamsipur, M., Rajabi, H. R., Beyzavi, M. H., & Sharghi, H. (2013). Bulk polymer nanoparticles containing a tetrakis (3-hydroxyphenyl) porphyrin for fast and highly selective separation of mercury ions. Microchimica Acta, 180, 791–799.

    Article  CAS  Google Scholar 

  • Shamsipur, M., Rajabi, H. R., Pourmortazavi, S. M., & Roushani, M. (2014). Ion imprinted polymeric nanoparticles for selective separation and sensitive determination of zinc ions in different matrices. Spectrochimica Acta A, 117, 24–33.

    Article  CAS  Google Scholar 

  • Singh, D. K., & Mishra, S. (2010). Synthesis and characterization of Hg (II)-ion-imprinted polymer: kinetic and isotherm studies. Desalination, 257, 177–183.

    Article  CAS  Google Scholar 

  • Taty-Costodes, V. C., Fauduet, H., Porte, C., & Delacroix, A. (2003). Removal of Cd (II) and Pb (II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. Journal of Hazardous Materials, 105, 121–142.

    Article  CAS  Google Scholar 

  • Tu, Q., Qvarnstrm, J., & Frech, W. (2000). Determination of mercury species by capillary zone electrophoresis-inductively coupled plasma mass spectrometry: a comparison of two spray chamber–nebulizer combinations. Analyst, 125, 705–710.

    Article  CAS  Google Scholar 

  • Tuzen, M. (2003). Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, 80, 119–123.

    Article  CAS  Google Scholar 

  • Vatanpour, V., Madaenia, S. S., Zinadinia, S., & Rajabi, H. R. (2011). Development of ion imprinted technique for designing nickel ion selective membrane. Journal of Membrane Science, 373, 36–42.

    Article  CAS  Google Scholar 

  • Wang, Z., Wu, G., & He, C. (2009). Ion-imprinted thiol-functionalized silica gel sorbent for selective separation of mercury ions. Microchimica Acta, 165, 151–157.

    Article  CAS  Google Scholar 

  • Wu, G., Wang, Z., Wang, J., & He, C. (2007). Hierarchically imprinted organic–inorganic hybrid sorbent for selective separation of mercury ion from aqueous solution. Analytica Chimica Acta, 582, 304–310.

    Article  CAS  Google Scholar 

  • Xua, S., Chen, L., Li, J., Guan, Y., & Lu, H. (2012). Novel Hg2+-imprinted polymers based on thymine–Hg2+–thymine interaction for highly selective preconcentration of Hg2+ in water samples. Journal of Hazardous Materials, 237–238, 347–354.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Ilam University Research Council for financing the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Roushani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roushani, M., Abbasi, S. & Khani, H. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of mercury in water and food samples employing cold vapor atomic absorption spectrometry. Environ Monit Assess 187, 601 (2015). https://doi.org/10.1007/s10661-015-4820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4820-z

Keywords

Navigation