Skip to main content
Log in

Source identification and metallic profiles of size-segregated particulate matters at various sites in Delhi

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A study of elemental composition in the ambient air of Delhi was carried out in the monsoon, winter and summer seasons at four different sites from August 2012 to April 2013 in the size ranges <1, 1–2.5, 2.5–10 and >10 μm using “Dekati PM10” impactor. At each site, three samples were collected and were analyzed by energy-dispersive X-ray fluorescence (EDXRF). The presence of elements was found to be very common and highly concentrated in aerosol particles at all the sites, which are Na, Al, Si, K, Ca, Zn and Ba. Total suspended particulate matters (TSPMs) of fine particles were found high in comparison to coarse particles at all seasons. The TSPM of fine particles was found to be varied in the range from 303.6 to 416.2 μg/m3. Similarly, the range of coarse TSPM was observed from 162.9 to 262.8 μg/m3. Correlation matrices were observed between fine (size ranges <1 and 1–2.5 μm) and coarse (size ranges 2.5–10 and >10 μm) size particles for all elements with seasons. Source apportionments of elements were carried out using MS Excel 2010 through XLSTAT software. The source apportionments between fine and coarse particles were carried out through factor analysis and dominated sources found to be crustal re-suspension and industrial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Awadh, S. M. (2012). Geochemistry and mineralogical composition of the airborne particles of sand dunes and dust storms settled in Iraq and their environmental impacts. Environmental Earth Sciences, 66, 2247–2256.

    Article  CAS  Google Scholar 

  • Balachandran, S., Meena, B. R., & Khillare, P. S. (2000). Particle size distribution and its elemental composition in the ambient air of Delhi. Environment International, 26, 49–54.

    Article  CAS  Google Scholar 

  • Bandhu, H. K., Puri, S., Shahi, J. S., Mehta, D., Garg, M. L., Singh, N., Mangal, P. C., Suri, C. R., Swietlicki, E., & Trehan, P. N. (1996). An evaluation of the sources of air pollution in the city of Chandigarh, India: a study using EDXRF technique. Nuclear Instruments and Methods in Physics Research B, 114, 341–344.

    Article  CAS  Google Scholar 

  • Bandhu, H. K., Puri, S., Garg, M. L., Singh, B., Shahi, J. S., Mehta, D., Swietlicki, E., Dhawan, D. K., Mangal, P. C., & Singh, N. (2000). Elemental composition and sources of air pollution in the city of Chandigarh, India, using EDXRF and PIXE techniques. Nuclear Instruments and Methods in Physics Research B, 160, 126–138.

    Article  CAS  Google Scholar 

  • Bi, X., Feng, Y., Wu, J., Wang, Y., & Zhu, T. (2007). Source apportionment of PM10 in six cities of northern China. Atmospheric Environment, 41, 903–912.

    Article  CAS  Google Scholar 

  • Bruggemann, E., Gerwig, H., Gnauk, T., Muller, K., & Herrmann, H. (2009). Influence of seasons, air mass origin and day of the week on size-segregated chemical composition of aerosol particles at a kerbside. Atmospheric Environment, 43, 2456–2463.

    Article  Google Scholar 

  • Cao, J. J., Chow, J. C., Watson, J. G., Wu, F., Han, Y. M., Jin, Z. D., Shen, Z. X., & An, Z. S. (2008). Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau. Atmospheric Environment, 42, 2261–2275.

    Article  CAS  Google Scholar 

  • Carvalho, M. L., Magalhães, T., Becker, M., & Bohlen, A. V. (2007). Trace elements in human cancerous and healthy tissues: a comparative study by EDXRF, TXRF, synchrotron radiation and PIXE. Spectrochimica Acta Part B, 62, 1004–1011.

    Article  Google Scholar 

  • Central Pollution Control Board (CPCB, Govt. of India) (2009). National Ambient Air Quality Standards.

  • Chatterjee, A., Dutta, C., Jana, T. K., & Sen, S. (2012). Fine mode aerosol chemistry over a tropical urban atmosphere: characterization of ionic and carbonaceous species. Journal of Atmospheric Chemistry, 69, 83–100.

    Article  CAS  Google Scholar 

  • Chow, J. C., Watson, J. G., Ashbaugh, L. L., & Magliano, K. L. (2003). Similarities and differences in PM10 chemical source profiles for geological dust from the San Joaquin Valley, California. Atmospheric Environment, 37, 1317–1340.

    Article  CAS  Google Scholar 

  • Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H., Crow, D., Kohl, S. D., Engelbrecht, J. P., & Green, M. C. (2004). Source profiles for industrial, mobile and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere, 54, 185–208.

    Article  CAS  Google Scholar 

  • Das, M., Maiti, S. K., & Mukhopadhyay, U. (2006). Distribution of PM2.5 and PM10–2.5 in PM10 fraction in ambient air due to vehicular pollution in Kolkata megacity. Environmental Monitoring and Assessment, 122(1–3), 111–123.

    Article  CAS  Google Scholar 

  • Delhi Statistical hand book (2013).

  • Dia, A., Chauvel, C., Bulourde, M., & Gérard, M. (2006). Eolian contribution to soils on Mount Cameroon: isotopic and trace element records. Chemical Geology, 226, 232–252.

    Article  CAS  Google Scholar 

  • Economic survey of Delhi (2012–13).

  • Eltayeb, M. A. H., Injuk, J., Maenhaut, W., & Van Grieken, R. E. (2001). Elemental composition of mineral aerosol generated from Sudan Sahara sand. Journal of Atmospheric Chemistry, 40, 247–273.

    Article  CAS  Google Scholar 

  • Figueroa-Cisterna, J., Bagur-González, M. G., Morales-Ruano, S., Carrillo-Rosúa, J., & Martín-Peinado, F. (2011). The use of a combined portable X ray fluorescence and multivariate statistical methods to assess a validated macroscopic rock samples classification in an ore exploration survey. Talanta, 85, 2307–2315.

    Article  CAS  Google Scholar 

  • Gidhagen, L., Kahelin, H., Schmidt-Thomé, P., & Johansson, C. (2002). Anthropogenic and natural levels of arsenic in PM10 in Central and Northern Chile. Atmospheric Environment, 36, 3803–3817.

    Article  CAS  Google Scholar 

  • Ho, K. F., Lee, S. C., Chow, J. C., & Watson, J. G. (2003). Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmospheric Environment, 37, 1023–1032.

    Article  CAS  Google Scholar 

  • Jain, M., Kulshrestha, U. C., Sarkar, A. K., & Parashar, D. C. (2000). Influence of crustal aerosols on wet deposition at urban and rural sites in India. Atmospheric Environment, 34, 5129–5137.

    Article  CAS  Google Scholar 

  • Khillare, P. S., Balachandran, S., & Meena, B. R. (2004). Spatial and temporal variation of heavy metals in atmospheric aerosol of Delhi. Environmental Monitoring and Assessment, 90, 1–21.

    Article  CAS  Google Scholar 

  • Kong, S., Ji, Y., Lu, B., Chen, L., Han, B., Li, Z., & Bai, Z. (2011). Characterization of PM10 source profiles for fugitive dust in Fushun—a city famous for coal. Atmospheric Environment, 45, 5351–5365.

    Article  CAS  Google Scholar 

  • Labban, R., Veranth, J. M., Chow, J. C., Engelbrecht, J. P., & Watson, J. G. (2004). Size and geographical variation in PM1, PM2.5 and PM10: source profiles from soils in the Western United States. Water, Air, and Soil Pollution, 157, 13–31.

    Article  CAS  Google Scholar 

  • Linke, C., Möhler, O., Veres, A., Mohácsi, A., Bozóki, Z., Szabó, G., & Schnaiter, M. (2006). Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmospheric Chemistry and Physics, 6, 3315–3323.

    Article  CAS  Google Scholar 

  • Lopes, F., Appoloni, C. R., Nascimento, V. F., Melquiades, F. L., & Almeida, L. C. (2006). Chemical characterization of particulate matter suspended in the atmosphere by energy dispersive X-ray fluorescence (EDXRF). Journal of Radioanalytical and Nuclear Chemistry, 270, 43–46.

    Article  CAS  Google Scholar 

  • Lowenthal, D. H., Gertler, A. W., & Labib, M. W. (2014). Particulate matter source apportionment in Cairo: recent measurements and comparison with previous studies. International Journal of Environmental Science and Technology, 11, 657–670.

    Article  CAS  Google Scholar 

  • Lu, S., Zhang, R., Yao, Z., Yi, F., Ren, J., Wu, M., Feng, M., & Wang, Q. (2012). Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere. Journal of Environmental Sciences, 24, 882–890.

    Article  CAS  Google Scholar 

  • Mahapatra, P. S., Ray, S., Das, N., Mohanty, A., Ramulu, T. S., Das, T., Chaudhury, G. R., & Das, S. N. (2013). Urban air-quality assessment and source apportionment studies for Bhubaneshwar, Odisha. Theoretical and Applied Climatology, 112, 243–251.

    Article  Google Scholar 

  • Mansha, M., Ghauri, B., Rahman, S., & Amman, A. (2012). Characterization and source apportionment of ambient air particulate matter (PM2.5) in Karachi. Science of the Total Environment, 425, 176–183.

    Article  CAS  Google Scholar 

  • Morawska, L., Keogh, D. U., Thomas, S. B., & Mengersen, K. (2008). Modality in ambient particle size distributions and its potential as a basis for developing air quality regulation. Atmospheric Environment, 42, 1617–1628.

    Article  CAS  Google Scholar 

  • Moreno, T., Querol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, L., Mounkaila, M., Elvira, J., & Gibbons, W. (2006). Geochemical variations in Aeolian mineral particles from the Sahara Sahel Dust Corridor. Chemosphere, 65, 261–270.

    Article  CAS  Google Scholar 

  • Nirmalkar, J., & Deb, M. K. (2015). Impact of intense field burning episode on aerosol mass loading and its possible health implications in rural area of eastern central India. Air Quality, Atmosphere & Health, 1–9.

  • Nirmalkar, J., Deb, M. K., Deshmukh, D. K., & Verma, S. K. (2013). Mass loading of size-segregated atmospheric aerosols in the ambient air during fireworks episodes in Eastern Central India. Bulletin of Environmental Contamination and Toxicology, 90(4), 434–439.

    Article  CAS  Google Scholar 

  • Nirmalkar, J., Deshmukh, D. K., Deb, M. K., Tsai, Y. I., & Sopajaree, K. (2015). Mass loading and episodic variation of molecular markers in PM 2.5 aerosols over a rural area in eastern central India. Atmospheric Environment, 117, 41–50.

    Article  CAS  Google Scholar 

  • Niu, J., Rasmussen, P. E., Wheeler, A., Williams, R., & Chenier, M. (2010). Evaluation of airborne particulate matter and metals data in personal, indoor and outdoor environments using ED-XRF and ICP-MS and co-located duplicate samples. Atmospheric Environment, 44, 235–245.

    Article  CAS  Google Scholar 

  • Odeshi, T. A., Ana, G. R. E. E., Sridhar, M. K., Olatunji, A. O., & Abimbola, A. F. (2014). Outdoor air particle-bound trace metals in four selected communities in Ibadan, Nigeria. Environmental Geochemistry and Health, 36, 755–764.

    Article  CAS  Google Scholar 

  • Ozturk, F., Zararsız, A., Kırmaz, R., & Tuncel, G. (2011). An approach to measure trace elements in particles collected on fiber filters using EDXRF. Talanta, 83, 823–831.

    Article  Google Scholar 

  • Pandey, P., Khan, A. H., Verma, A. K., Singh, K. A., Mathur, N., Kisku, G. C., & Barman, S. C. (2012). Seasonal trends of PM2.5 and PM10 in ambient air and their correlation in ambient air of Lucknow City, India. Bulletin of Environmental Contamination and Toxicology, 88(2), 265–270.

    Article  CAS  Google Scholar 

  • Pathak, A. K., Yadav, S., Kumar, P., & Kumar, R. (2013). Source apportionment and spatial–temporal variations in the metal content of surface dust collected from an industrial area adjoining Delhi, India. Science of the Total Environment, 443, 662–672.

    Article  CAS  Google Scholar 

  • Pekey, H., & Dogan, G. (2013). Application of positive matrix factorisation for the source apportionment of heavy metals in sediments: a comparison with a previous factor analysis study. Microchemical Journal, 106, 233–237.

    Article  CAS  Google Scholar 

  • Pekey, H., Pekey, B., Arslanbas, D., Bozkurt, Z. B., Dogan, G., & Tuncel, G. (2013). Source apportionment of personal exposure to fine particulate matter and volatile organic compounds using positive matrix factorization. Water Air Soil Pollution, 224, 1403.

    Article  Google Scholar 

  • Pietrodangelo, A., Salzano, R., Rantica, E., & Perrino, C. (2013). Characterisation of the local topsoil contribution to airborne particulate matter in the area of Rome (Italy). Source profiles. Atmospheric Environment, 69, 1–14.

    Article  CAS  Google Scholar 

  • Pipal, A. S., Kulshrestha, A., & Taneja, A. (2011). Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India. Atmospheric Environment, 45, 3621–3630.

    Article  CAS  Google Scholar 

  • Sarkar, S., Khillare, P. S., Jyethi, D. S., Hasan, A., & Parween, M. (2010). Chemical speciation of respirable suspended particulate matter during a major firework festival in India. Journal of Hazardous Materials, 184, 321–330.

    Article  CAS  Google Scholar 

  • Sharma, S. G., & Srinivas, M. S. N. (2009). Study of chemical composition and morphology of airborne particles in Chandigarh, India using EDXRF and SEM techniques. Environmental Monitoring and Assessment, 150, 417–425.

    Article  CAS  Google Scholar 

  • Shridhar, V., Khillare, P. S., Agarwal, T., & Ray, S. (2010). Metallic species in ambient particulate matter at rural and urban location of Delhi. Journal of Hazardous Materials, 175, 600–607.

    Article  CAS  Google Scholar 

  • Singh, K., Tiwari, S., Jha, A. K., Aggarwal, S. G., Bisht, D. S., Murty, B. P., Khan, Z. H., & Gupta, P. K. (2013). Mass-size distribution of PM10 and its characterization of ionic species in fine (PM2.5) and coarse (PM10–2.5) mode, New Delhi, India. Natural Hazards, 68, 775–789.

    Article  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2005). A study to characterize the influence of outdoor SPM and associated metals on the indoor environments in Delhi. Journal of Environmental Science and Engineering, 47, 222–231.

    CAS  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2007a). Seasonal trends in coarse and fine particle sources in Delhi by the chemical mass balance receptor model. Journal of Hazardous Materials, 144, 283–291.

    Article  CAS  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2007b). Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi. Chemosphere, 68, 579–589.

    Article  CAS  Google Scholar 

  • Srivastava, A., Gupta, S., & Jain, V. K. (2008). Source apportionment of total suspended particulate matter in coarse and fine size ranges over Delhi. Aerosol and Air Quality Research, 8, 188–200.

    CAS  Google Scholar 

  • Srivastava, A., Gupta, S., & Jain, V. K. (2009). Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi. Atmospheric Research, 92, 88–99.

    Article  CAS  Google Scholar 

  • Tandon, A., Yadav, S., & Attri, A. K. (2008). City-wide sweeping a source for respirable particulate matter in the atmosphere. Atmospheric Environment, 42, 1064–1069.

    Article  CAS  Google Scholar 

  • Tovalin-Ahumada, H., Whitehead, L., & Blanco, S. (2007). Personal exposure to PM2.5 and element composition—a comparison between outdoor and indoor workers from two Mexican cities. Atmospheric Environment, 41, 7401–7413.

    Article  CAS  Google Scholar 

  • Vega, E., Mugica, V., Reyes, E., Sánchez, G., Chow, J. C., & Watson, J. G. (2001). Chemical composition of fugitive dist emitters in Mexico City. Atmospheric Environment, 35, 4033–4039.

    Article  CAS  Google Scholar 

  • Yadav, S., & Rajamani, V. (2004). Geochemistry of aerosols of northwestern part of India adjoining the Thar Desert. Geochimica et Cosmochimica Acta, 68, 1975–1988.

    Article  CAS  Google Scholar 

  • Yadav, S., & Rajamani, V. (2006). Air quality and trace metal chemistry of different size fractions of aerosols in N–NW India—implications for source diversity. Atmospheric Environment, 40, 698–712.

    Article  CAS  Google Scholar 

  • Yatkin, S., Gerboles, A., & Borowiak, A. (2012). Evaluation of standardless EDXRF analysis for the determination of elements on PM10 loaded filters. Atmospheric Environment, 54, 568–582.

    Article  CAS  Google Scholar 

  • Yeung, Z. L. L., Kwok, R. C. W., & Yu, K. N. (2003). Determination of multi-element profiles of street dust using energy dispersive X-ray fluorescence (EDXRF). Applied Radiation and Isotopes, 58, 339–346.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors deeply acknowledge valuable and constructive suggestions of the reviewers and editor. NH is thankful to the Council of Scientific and Industrial Research (CSIR) for fellowship.

Compliance with ethical standard

Funding

This study was funded partially by JNU and CSIR (in the form of Jr. Research Fellowship to Naba Hazarika).

Conflict of interest

Authors or funding agencies have no conflict of interest.

Research involving human participants and animals

We would like to inform that the experiments that we carried out did not involve human and animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, N., Jain, V.K. & Srivastava, A. Source identification and metallic profiles of size-segregated particulate matters at various sites in Delhi. Environ Monit Assess 187, 602 (2015). https://doi.org/10.1007/s10661-015-4809-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4809-7

Keywords

Navigation