Skip to main content

Advertisement

Log in

Element accumulation, distribution, and phytoremediation potential in selected metallophytes growing in a contaminated area

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The distribution of elements in three pseudometallophytes species Cardaminopsis arenosa, Plantago lanceolata, and Plantago major, naturally occurring at metalliferous and non-metalliferous sites in southern Poland, was investigated. The accumulation of Al, Cd, Cu, Fe, Mn, Pb, Zn, as well as Ca, P, Na, and K in shoots and roots was measured. The level of the accumulated trace elements (ATE) was visibly higher in C. arenosa and P. lanceolata from metalliferous sites than non-contaminated ones. However, the level of the accumulated nutrient elements (ANE) was visibly higher only in C. arenosa plants. Also, higher potassium share in ANE was found in the shoots of C. arenosa and Plantago species from metalliferous sites than non-contaminated ones. The highest content of Cd, Zn, Pb, Al, Fe, and Mn was found in C. arenosa, which better reflected metal concentrations in the metalliferous and non-metalliferous soil than other plants. In the studied Plantago species, in almost all cases in all sites TF (translocation coefficient) and MR (mobility ratio) were below 1, which indicates they use the excluder strategy. The best accumulation ability was found for C. arenosa. The higher translocation coefficients (TF > 1) for Zn and Cd in C. arenosa shoots make it suitable for phytoextraction from soil, while the lower translocation ratios (TF < 1) for Zn and Cd in Plantago species and also for Pb in C. arenosa make them suitable for phytostabilization. Almost in all cases the plants had enrichment coefficient >2, which suggested that they may act as indicators of the soil metal contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Álvarez, E., Marcos, F., Vaamonde, C., & Fernándea-Sanjurjo, M. J. (2003). Heavy metals in the dump of abandoned mine in Galicja (NW Spain) and in the spontaneously occurring vegetation. Science of the Total Environment, 313, 185–197.

    Article  Google Scholar 

  • Antosiewicz, D. M. (1992). Adaptation of plants to an environment polluted with heavy metals. Acta Societatis Botanicorum Poloniae, 61, 281–299.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluder—strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1987). Metal tolerance. New Phytologist, 106, 93–111.

    Article  CAS  Google Scholar 

  • Bech, J., Roca, N., Barceló, J., Duran, P., Tume, P., & Poschenrieder, C. (2012). Soil and plant contamination by lead mining in Bellmunt (Western Mediterranean Area). Journal of Geochemical Exploration, 113, 94–99.

    Article  CAS  Google Scholar 

  • Bekteshi, A., & Bara, G. (2013). Uptake of heavy metals from Plantago major in the Region of Durrës, Albania. Polish Journal of Environmental Studies, 22, 1881–1885.

    CAS  Google Scholar 

  • Bidar, G., Garçon, G., Pruvot, C., Dewaele, D., Cazier, F., Douay, F., & Shirali, P. (2007). Behaviour of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environmental Pollution, 147, 546–553.

    Article  CAS  Google Scholar 

  • Bini, C., Wahsha, M., Fontana, S., & Maleci, L. (2012). Effects of heavy metals on morphological characteristics of Taraxacum officinale Web growing on mine soil NE Italy. Journal of Geochemical Exploration, 123, 101–108.

    Article  CAS  Google Scholar 

  • Braquinho, C., Serrano, H., Pinto, M., & Martins-Loução, M. (2007). Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. Environmental Pollution, 146, 437–443.

    Article  Google Scholar 

  • Chojnacka, K., Chojnacki, A. H., Górecka, H., & Górecki, H. (2005). Bioavailability of heavy metals from polluted soils to plants. Science of the Total Environment, 337, 175–118.

    Article  CAS  Google Scholar 

  • Dazy, M., Béraud, E., Cotelle, S., Grévilliot, F., Férard, J.-F., & Masfaraud, J.-F. (2009). Changes in plant communities along soil pollution gradients: responses of leaf antioxidant enzyme activities and phytochelatin contents. Chemosphere, 77, 376–383.

    Article  CAS  Google Scholar 

  • Dazy, M., Jung, V., Férard, J.-F., & Masfaraud, J.-F. (2008). Ecological recovery of vegetation on a coke-factory soil: role of plant antioxidant enzymes and possible implications in site restoration. Chemosphere, 74, 57–63.

    Article  CAS  Google Scholar 

  • Ernst, W. H. O. (2005). Phytoextraction of mine wastes—options and impossibilities. Chem Erde–Geochem, 65, 29–42.

    Article  CAS  Google Scholar 

  • Ernst, W. H. O. (2006). Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research, 80, 251–274.

    Google Scholar 

  • Gadzała-Kopciuch, R., Berecka, B., Bartoszewicz, J., & Buszewski, B. (2004). Some considerations about bioindicators in environmental monitoring. Polish Journal of Environmental Studies, 13, 453–462.

    Google Scholar 

  • Galal, T. M., & Shehata, H. S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244–251.

    Article  CAS  Google Scholar 

  • Godzik, B. (1993). Heavy metals content in plants from zinc dumps and reference areas. Polish Botanical Studies, 5, 113–132.

    Google Scholar 

  • Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20, 6150–6159.

    Article  CAS  Google Scholar 

  • Jansen, S., Watanabe, T., Dessein, S., Robbrecht, E., & Smets, E. (2004). The evolution of aluminium accumulation in angiosperms. In A. R. Hemsley, & I. Poole (Eds.), The evolution of plant physiology. Linnean Society Symposium Series 21 (pp. 467–479). London: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed., ). Boca Raton FL:CRC press.

    Google Scholar 

  • Kafel, A., Nadgórska-Socha, A., Gospodarek, J., Babczyńska, A., Skowronek, M., Kandziora, M., & Rozpendek, K. (2010). The effects of Aphis fabae infestation on the antioxidant response and heavy metal content in field grown Philadelphus coronarius plants. Science of the Total Environment, 408, 1111–1119.

    Article  CAS  Google Scholar 

  • Ke, W., Xiong, Z.-T., Chen, S., & Chen, J. (2007). Effects of copper and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environmental and Experimental Botany, 59, 59–67.

    Article  CAS  Google Scholar 

  • Kovács, M. (Ed.) (1992). Biological indicators in environmental protection. New York:Ellis Horwood.

    Google Scholar 

  • Kumar, N., Bauddh, K., Kumar, S., & Dwivedi, N. (2013). Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecological Engineering, 61, 491–495.

    Article  Google Scholar 

  • Leung, H. M., Ye, Z. H., & Wong, M. H. (2007). Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere, 66, 905–915.

    Article  CAS  Google Scholar 

  • Lin, A., Zhang, X., Zhu, Y.-G., & Zhao, F.-J. (2008). Arsenate induced toxicity: effects on antioxidative enzymes and DNA damage in Vicia faba. Environmental Toxicology and Chemistry, 27, 413–419.

    Article  CAS  Google Scholar 

  • Liu, J., Xing, Z. T., Li, T. Y., & Huang, H. (2004). Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from copper contaminated and non-contaminated sites. Environmental and Experimental Botany, 52, 43–51.

    Article  CAS  Google Scholar 

  • Malizia, D., Guliano, A., Ortaggi, G., & Masotti, A. (2012). Common plants as alternative analytical tools to monitor heavy metals in soil. Chemistry Central Journal, 6(Suppl 2), S6.

    Article  CAS  Google Scholar 

  • Markert, B., Wuenschmann, S., Fraenzle, S., Wappelhorst, O., Weckert, V., Breulmann, G., Djingova, R., Herpin, U., Lieth, H., Schroeder, W., Siewers, U., Steinnes, E., Wolterbeek, B., & Zechmeister, H. (2008). On the road from environmental biomonitoring to human health aspects: monitoring atmospheric heavy metal deposition by epiphytic/epigeic plants: present status and future needs. International Journal of Environment and Pollution, 32, 486–498.

    Article  CAS  Google Scholar 

  • Massa, N., Andreucci, F., Poli, M., Aceto, M., Barbato, M., & Berta, G. (2010). Screening for heavy metal accumulators amongst autochthonous plants in a polluted site in Italy. Ecotoxicology and Environmental Safety, 73, 1988–1997.

    Article  CAS  Google Scholar 

  • Menzies, N. W., Donn, M. J., & Kopittked, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145, 121–130.

    Article  CAS  Google Scholar 

  • Mingorance, M. D., Valdes, B., & Rossini Oliva, S. (2007). Strategies of heavy metals uptake by plants growing under industrial emissions. Environment International, 33, 514–520.

    Article  CAS  Google Scholar 

  • Moreira, H., Marques, A. P. G. C., Rangel, A. O. S. S., & Castro, P. M. L. (2011). Heavy metals accumulation in plant species indigenous to a contaminated Portuguese site: prospects for phytoremediation. Water, Air, and Soil Pollution, 221, 377–389.

    Article  CAS  Google Scholar 

  • Moreno-Jiménez, E., Peňalosa, J. M., Manzano, R., Carpena-Ruiz, R. O., Gamarra, R., & Esteban, E. (2009). Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. Journal of Hazardous Materials, 162, 854–859.

    Article  Google Scholar 

  • Nadgórska-Socha, A., & Ciepał, R. (2009). Phytoextraction of Zn, Pb, Cd with Silene vulgaris Moench (Garcke) growing in the postindustrial area. Ecological Chemistry and Engineering A, 16, 831–837.

    Google Scholar 

  • Nadgórska-Socha, A., Ciepał, R., Kandziora, M., & Kafel, A. (2009). Heavy metals bioaccumulation and physiological responses to heavy metals stress in populations of Silene vulgaris from heavy metals contaminated sites. Ecological Chemistry and Engineering A, 16, 381–397.

    Google Scholar 

  • Nadgórska-Socha, A., Ptasiński, B., & Kita, A. (2013). Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: a field study. Ecotoxicology, 22, 1422–1434.

    Article  Google Scholar 

  • Nazar, R., Iqbal, N., Masood, A., Khan, M. I. R., Syeed, S., & Khan, N. A. (2012). Cadmium toxicity in plants and role of mineral nutrients in its alleviation. American Journal of Plant Science, 3, 1476–1489.

    Article  Google Scholar 

  • Ostrowska, A., Gawliński, S., Szczubiałka, Z. (1991). Method of analysis and estimate soil and plants property. Warsaw: Catalogue of the Environmental Protection Institute [in Polish].

  • Ostrowska, A., & Porębska, G. (2002). The plant chemical composition, its interpretation and use in environmental protection. Warszawa: Institute of Environmental Protection [in Polish].

    Google Scholar 

  • Regulation by the Minister of Environment dated 9 September. (2002). Official Gazette No. 165, Pos. 1359th [in Polish].

  • Remon, E., Bouchardon, J.-L., & Faure, O. (2007). Multi-tolerance to heavy metals in Plantago arenaria Waldst. & Kit.: adaptative versus constitutive characters. Chemosphere, 69, 41–47.

    Article  CAS  Google Scholar 

  • Rossini Oliva, S., & Mingorance, M. D. (2006). Assessment of airborne heavy metal pollution by aboveground plant parts. Chemosphere, 65, 177–182.

    Article  CAS  Google Scholar 

  • Ryser, P., & Emerson, P. (2007). Growth, root and leaf structure, and biomass allocation in Leucanthemum vulgare Lam. (Asteraceae) as influenced by heavy-metal-containing slag. Plant and Soil, 301, 315–324.

    Article  CAS  Google Scholar 

  • Serbula, S. M., Milljkovic, D. D. J., Kovacevic, R. M., & Ilic, A. A. (2012). Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicology and Environmental Safety, 76, 209–214.

    Article  CAS  Google Scholar 

  • Słomka, A., Libik-Konieczny, M., Kuta, E., & Miszalski, Z. (2008). Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. Journal of Plant Physiology, 165, 1610–1619.

    Article  Google Scholar 

  • StatSoft, Inc. 2011. STATISTICA (data analysis software system), version 10. www.statsoft.com.

  • Steindor, K., Palowski, B., Góras, P., & Nadgórska-Socha, A. (2011). Assessment of bark reaction of selected tree species as an indicator of acid gaseous pollution. Polish Journal of Environmental Studies, 20, 619–622.

    CAS  Google Scholar 

  • Szarek-Łukaszewska, G., & Godzińska, K. (2007). Vegetation of post-mining open pit (Zn/Pb ores) three-year study of colonization. Polish Journal of Ecology, 55(2), 261–282.

    Google Scholar 

  • Szarek-Lukaszewska, G., & Niklińska, M. (2002). Concentration of alkaline and heavy metals in Biscutella laevigata L. and Plantago lanceolata L. growing on calamine spoils (S. Poland). Acta Biologica Cracoviensia Series Botanica, 44, 29–38.

    Google Scholar 

  • Szarek-Łukaszewska, G., Słysz, A., & Wierzbicka, M. (2004). Responce of Armeria maritima (Mill) Willd to Cd, Zn and Pb. Acta Biologica Cracoviensia Series Botanica, 46, 19–24.

    Google Scholar 

  • Usman, A. R. A., Lee, S. S., Awad, Y. M., Lim, K. J., Yang, J. E., & Ok, Y. S. (2012). Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere, 87, 872–878.

    Article  CAS  Google Scholar 

  • Wei, C. H., & Chen, T. B. (2006). Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere, 63, 1048–1053.

    Article  CAS  Google Scholar 

  • Wójcik, M., Sugier, P., & Siebielec, G. (2014). Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Science of the Total Environment, 487, 313–322.

    Article  Google Scholar 

  • Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schwartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead zinc mine area in Yunnan China. Environmental Pollution, 31, 755–762.

    Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on contaminated Florida site. Science of the Total Environment, 368, 456–464.

    Article  CAS  Google Scholar 

  • Yüksek, T. (2012). The restoration effects of black locust (Robinia pseudoacacia L) plantation on surface soil properties and carbon sequestration on lower hillslopes in the semi-humid region of Coruh Drainage Basin in Turkey. Catena, 90, 18–25.

    Article  Google Scholar 

  • Zhao, H., Wu, L., Zhang, Y., Tan, J., & Ma, S. (2012). The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. Journal of Plant Physiology, 169, 1243–1252.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grant for Young Scientist at the Biology and Environmental Protection Department, University of Silesia.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Nadgórska-Socha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadgórska-Socha, A., Kandziora-Ciupa, M. & Ciepał, R. Element accumulation, distribution, and phytoremediation potential in selected metallophytes growing in a contaminated area. Environ Monit Assess 187, 441 (2015). https://doi.org/10.1007/s10661-015-4680-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4680-6

Keywords

Navigation