Skip to main content

Advertisement

Log in

Microbial contamination of dental unit waterlines and effect on quality of indoor air

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (<500 colony-forming units (CFU)/m3) of contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (<100 CFU/m3) of contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study’s determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • American Dental Association. (1996). American Dental Association statement on dental unit waterlines. Journal of the American Dental Association, 127, 185–186.

    Article  Google Scholar 

  • Anaissie, E. J., Kuchar, R. T., Rex, J. H., Francesconi, A., Kasai, M., Muller, F.-M. C., et al. (2001). Fusariosis associated with pathogenic Fusarium species colonization of a hospital water system: a new paradigm fort the epidemiology of opportunistic mold infections. Clinical Infectious Diseases, 33, 1871–1878.

    Article  CAS  Google Scholar 

  • Arvanitidou, M., Kanellou, K., Katsouyannopoulos, V., & Tsakris, A. (2002). Occurrence and densities of fungi from northern Greek coastal bathing waters and their relation with faecal pollution indicators. Water Research, 36, 5127–5131.

    Article  CAS  Google Scholar 

  • Asan, A., Kırgız, T., Şen, B., Çamur-Elipek, B., Güner, U., & Güher, H. (2003). Isolation, identification and seasonal distribution of airborne and waterborne fungi in Terkos Lake (İstanbul-Turkey). Journal of Basic Microbiology, 43(2), 83–95.

    Article  Google Scholar 

  • Atlas, R. M., Williams, J. F., & Huntington, M. K. (1995). Legionella contamination of dental-unit waters. Applied and Environmental Microbiology, 61(4), 1208–1213.

    CAS  Google Scholar 

  • Aydogdu, H., & Asan, A. (2008). Airborne fungi in child day care centers in Edirne City, Turkey. Environmental Monitoring and Assessment, 147, 423–444.

    Article  Google Scholar 

  • Aydogdu, H., Asan, A., & Tatman Otkun, M. (2010). Indoor and outdoor bacteria in child day-care centers in Edirne city (Turkey), seasonal distribution and influence of meteorological factors. Environmental Monitoring and Assessment, 164, 53–66.

    Article  CAS  Google Scholar 

  • Barlean, L., Smaranda Iancu, L., Luminita Minea, M., Danila, I., & Baciu, D. (2010). Airborne microbial contamination in dental practices in Iasi, Romania. Oral Health and Dental Management in the Black Sea Countries, 9(1), 16–20.

    Google Scholar 

  • Barnett, H. L., & Hunter, B. B. (1999). Illustrated genera of imperfect fungi (4th ed.). St. Paul: APS.

    Google Scholar 

  • Borella, P., Bargellini, A., Marchesi, I., Rovesti, S., Stancanelli, G., Scaltriti, S., et al. (2008). Prevalence of anti-legionella antibodies among Italian hospital workers. Journal of Hospital Infection, 69, 148–155.

    Article  CAS  Google Scholar 

  • Cellini, L., Di Campli, E., Di Candia, M., & Chiavaroli, G. (2001). Quantitative microbial monitoring in a dental office. Public Health, 115, 301–305.

    Article  CAS  Google Scholar 

  • Cloete, T. E., Thantsha, M. S., Maluleke, M. R., & Kirkpatrick, R. (2009). The antimicrobial mechanism of electrochemically activated water against Pseudomonas aeruginosa and Escherichia coli as determined by SDS-PAGE analyses. Journal of Applied Microbiology, 107, 379–384.

    Article  CAS  Google Scholar 

  • Coleman, D. C., Q’Donnell, M. J., Shore, A. C., Swan, J., & Russell, R. J. (2007). The role of manufacturers in reducing biofilms in dental chair waterlines. Journal of Dentistry, 35, 701–711.

    Article  CAS  Google Scholar 

  • Coleman, D. C., Q’Donnell, M. J., Shore, A. C., & Russell, R. J. (2009). Biofilm problems in dental unit water systems and its practical control. Journal of Applied Microbiology, 1–14.

  • Commission of the European Communities. (1993). Environment and quality of life report no. 12 biological particles in indoor environments. Brussels: Commission of the European Communities Directorate-General Xlll Information Technologies and Industries, and Telecommunications.

    Google Scholar 

  • Czarneski, M. A. (2009). Microbial decontamination of a 65-room new pharmaceutical research facility. Applied Biosafety Journal of the American Biological Safety Association, 14(2), 81–88.

    Google Scholar 

  • Doggett, M. S. (2000). Characterization of fungal biofilms within a municipal water distribution system. Applied and Environmental Microbiology, 66(3), 1249–1251.

    Article  CAS  Google Scholar 

  • Dogruoz Gungor, N., Göksay Kadaifciler, D., & Oztan Peker, O. (2013). Investigation of the bacterial load and antibiotic susceptibility of dental units. Environmental Monitoring and Assessment. doi:10.1007/s10661-013-3498-3.

  • Dutil, S., Meriaux, A., de Latremoillle, M. C., Lazure, L., Barbeau, J., & Duchaine, C. (2009). Measurement of airborne bacteria and endotoxin generated during dental cleaning. Journal of Occupational and Environmental Hygiene, 6, 121–130.

    Article  CAS  Google Scholar 

  • Ellis, M. B. (1971). Dematiaceous hyphomycetes. London: The Eastern.

    Google Scholar 

  • Flannigan, B., Samson, R. A., & Miller, J. D. (2011). Microorganisms in home and indoor work environments (Diversity, health impacts, investigation and control 2nd ed.). New York: Taylor & Francis Group.

    Book  Google Scholar 

  • Fotos, P. G., WestfalL, H. N., Snyder, I. S., Miller, R. W., & Mutchler, B. M. (1985). Prevalence of Legionella-specific IgG and IgM antibody in a dental clinic population. Journal of Dental Research, 64(12), 1382–1385.

    Article  CAS  Google Scholar 

  • Göksay, D., Çotuk, A., & Zeybek, Z. (2008). Microbial contamination of dental unit waterlines in Istanbul, Turkey. Environmental Monitoring and Assessment, 147, 265–269.

    Article  Google Scholar 

  • Goncalves, A. B., Paterson, R. R. M., & Lima, N. (2006). Survey and significance of filamentous fungi from tap water. International Journal of Hygiene and Environmental Health, 209, 257–264.

    Article  Google Scholar 

  • Gorny, R. L., & Dutkiewicz, J. (2002). Bacterial and fungal aerosols in indoor environment in central and eastern European countries. Annals of Agricultural and Environmental Medicine, 9, 17–23.

    Google Scholar 

  • Göttlich, E., Van Der Lubbe, W. A., Lange, B., Fiedler, S., Melchert, I., Reifenrath, M., et al. (2002). Fungal flora in groundwater-derived public drinking water. International Journal of Hygiene and Environmental Health, 205, 269–279.

    Article  Google Scholar 

  • Greiner, D. (1995). Quantitative analyses of bacterial aerosols in two different dental clinic environments. Applied and Environmental Microbiology, 61(8), 3165–3168.

    Google Scholar 

  • Hageskal, G., Lima, N., & Skaar, I. (2008). The study of fungi in drinking water. Mycological Research, 1–8.

  • Haliki-Uztan, A., Ateş, M., Abaci, Ö., Gülbahar, O., Erdem, N., Çiftçi, Ö., et al. (2010). Determination of potential allergenic fungal flora and its clinical reflection in suburban elementary schools in Izmir. Environmental Monitoring and Assessment, 168, 691–702.

    Article  Google Scholar 

  • Hallier, C., Williams, D. W., Potts, A. J. C., & Lewis, M. A. O. (2010). A pilot study of bioaerosol reduction using an air cleaning system during dental procedures. British Dental Journal, 209, 1–4.

    Article  Google Scholar 

  • Hapcıoglu, B., Yeğenoğlu, Y., Erturan, Z., Nakipoğlu, Y., & İşsever, H. (2005). Heterotrophic bacteria and filamentous fungi isolated from a hospital water distribution system. Indoor Built and Environment, 14(6), 487–493.

    Article  Google Scholar 

  • Hedayati, M. T., Mayahi, S., Movahedi, M., & Shokohi, T. (2011). Study on fungal flora of tap water as a potential reservoir of fungi in hospitals in Sari City, Iran. Journal de Mycologie Medicale, 21, 10–14.

    Article  CAS  Google Scholar 

  • Iatta, R., Napoli, C., Borghi, E., & Montagna, M. T. (2009). Rare mycoses of the oral cavity: a literature epidemiologic. Oral Surgery Oral Medicine Oral Pathology Oral radiology and Endodontology, 108(5), 647–655.

    Article  Google Scholar 

  • Kanzler, D., Buzina, W., Paulitsch, A., Haas, D., Platzer, S., Marth, E., et al. (2007). Occurrence and hygienic relevance of fungi in drinking water. Mycoses, 51, 165–169.

    Article  Google Scholar 

  • Kim, B. R., Anderson, J. E., Mueller, S. A., Gaines, W. A., & Kendall, A. M. (2002). Literature review—efficacy of various disinfectants against Legionella in water systems. Water Research, 36(18), 4433–4444.

    Article  CAS  Google Scholar 

  • Kim, K. Y., Park, J. B., Jang, G. Y., Kim, C. N., & Lee, K. J. (2007). Assessment of bioaerosols in the public buildings of Korea. Indoor and Built Environment, 16(5), 465–471.

    Article  Google Scholar 

  • Klich, M. A. (2002). Identification of common Aspergillus species. Utrecht: Centraalbureau voor Schimmelcultures.

    Google Scholar 

  • Kumar, S., Atray, D., Paiwal, D., Balasubramanyam, G., Duraiswamy, P., & Kulkarni, S. (2010). Dental unit waterlines: source of contamination and cross-infection. Journal of Hospital Infection, 74, 99–111.

    Article  CAS  Google Scholar 

  • Kutoyama, I., Osato, S., Nakajıma, S., Kubota, R., & Ogawa, T. (2010). Environmental monitoring and bactericidal efficacy of chlorine dioxide gas in a dental office. Biocontrol Science, 15(3), 103–109.

    Article  Google Scholar 

  • Larranaga, M. D., Karunasena, E., Holder, H. W., Beruvides, M. G., & Straus, D. C. (2011). Improving the quality of the indoor environment utilizing desiccant-assisted heating, ventilating, and air conditioning systems. In N. Mazzeo (Ed.), Chemistry, emission control, radioactive pollution and indoor air quality (pp. 563–595). Croatia: InTech.

    Google Scholar 

  • Lee, T., Grinshpun, S. A., Martuzevicius, D., Adhikari, A., Crawford, C. M., & Reponen, T. (2006). Culturability and concentration of indoor and outdoor airborne fungi in six single-family homes. Atmospheric Environment, 40, 2902–2910.

    Article  CAS  Google Scholar 

  • Lin, S. M., Svoboda, K. K. H., Giletto, A., Seibert, J., & Puttaiah, R. (2011). Effects of hydrogen peroxide on dental unit biofilms and treatment water contamination. European Journal of Dentistry, 5, 47–59.

    Google Scholar 

  • Luo, J., Porteous, N., & Sun, Y. (2011). Rechargeable biofilm-controlling tubing materials for use in dental unit water lines. ACS Applied Materials and Interfaces, 3(8), 2895–2903.

    Article  CAS  Google Scholar 

  • Hi-Media. (2003). The HiMedia manual for microbiology and cell culture laboratory practice (p. 175). Mumbai: HiMediaLaboratories Pvt. Limited.

    Google Scholar 

  • Martin, M. V. (1987). The significance of the bacterial contamination of dental unit water systems. British Dental Journal, 163, 152–154.

    Article  CAS  Google Scholar 

  • Messano, G. A., Sofan, A. A. A., & Petti, S. (2013). Quality of air and water in dental healthcare settings during professional tooth cleaning. Acta Stomatologica Naissi, 29, 1230–1235.

    Article  Google Scholar 

  • Nikaeen, M., Hatamzadeh, M., Sabzevan, Z., & Zareh, O. (2009). Microbial quality of water in dental unit waterlines. Journal of Research in Medical Sciences, 14(5), 297–300.

    Google Scholar 

  • Okten, S., & Asan, A. (2012). Airborne fungi and bacteria in indoor and outdoor environment of the pediatric unit of Edirne government hospital. Environmental Monitoring and Assessment, 184(3), 1739–1751.

    Article  Google Scholar 

  • Park, D. U., Yeom, J. K., Lee, W. J., & Lee, K. M. (2013). Assessment of the level of airborne bacteria, Gram negative bacteria and fungi in hospital lobbies. International Journal of Environmental Research and Public Health, 10, 541–555.

    Article  Google Scholar 

  • Pasquarella, C., Veronesi, L., Castiglia, P., Liguori, G., Montagna, M. T., Napoli, C., et al. (2010). Italian multicenter study on microbial environmental contamination in dental clinics: a pilot study. Science of the Total Environment, 408(19), 4045–4051.

    Article  CAS  Google Scholar 

  • Pasquarella, C., Veronesi, L., Napoli, C., Castiglia, P., Liguori, G., Rizzetto, R., et al. (2012). Microbial environmental contamination in Italian dental clinics: a multicenter study yielding recommendations for standardized sampling methods and threshold values. Science of the Total Environment, 420, 289–299.

    Article  CAS  Google Scholar 

  • Pitt, J. I. (2000). A laboratory guide to common Penicillium species (3rd ed.). North Ryde: Food Science Australia.

    Google Scholar 

  • Porter, S. R. (2002). Prions and dentistry. Journal of the Royal Society Medicine, 95, 178–181.

    Article  Google Scholar 

  • Porteus, N. B. (2010). Dental unit waterline contamination—a review. Texas Dental Journal, 127(7), 677–685.

    Google Scholar 

  • Porteus, N. B., Grooters, A. M., Redding, S. W., Thompson, E. H., Rinaldi, M. G., De Hoog, G. S., et al. (2003). Identification of Exophiala mesophila isolated from treated dental unit waterlines. Journal of Clinical Microbiology, 41(8), 3885–3889.

    Article  Google Scholar 

  • Reasoner, D. J., & Geldreich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49(1), 1–7.

    CAS  Google Scholar 

  • Robinson, G. M., Lee, S. W. H., Greenman, J., Salibury, V. C., & Reynolds, D. M. (2010). Evaluation of the efficacy of electrochemically activated solutions against nosocomial pathogens and bacterial endospores. Letters in Applied Microbiology, 50, 289–294.

    Article  CAS  Google Scholar 

  • Shivakumar, K. M., Prashant, G. M., Madhu Shankari, G. S., Subba Reddy, V. V., & Chandu, G. N. (2007). Assessment of atmospheric microbial contamination in a mobile dental unit. Indian Journal of Dental Research, 18(4), 177–180.

    Article  CAS  Google Scholar 

  • Singh, J. (2005). Toxic moulds and indoor air quality. Indoor and Built Environment, 14(3), 229–234.

    Article  CAS  Google Scholar 

  • Sungur, E., Minnos, B., & Dogruoz, N. (2008). Isolation of aerobic heterotrophic and anaerobic sulphate reducing bacteria from model water system by filtration method. International University of Fundamental Studies Journal of Biology, 67(1), 33–38.

    Google Scholar 

  • Szymanska, J. (2005). Evaluation of mycological contamination of dental unit waterlines. Annals of Agricultural and Environmental Medicine, 12, 153–155.

    Google Scholar 

  • Szymanska, J. (2007). Dental bioaerosol as an occupational hazard in a dentist’s workplace. Annals of Agricultural and Environmental Medicine, 14, 203–207.

    Google Scholar 

  • Tasic, S., & Tasic Miladinovic, N. (2007). Cladosporium spp.—cause of opportunistic mycoses. Acta Facultatis Meicare Naissensis, 24(1), 15–19.

    Google Scholar 

  • Thorn, R. M. S., Lee, S. W. H., Robinson, G. M., Greenman, J., & Reynolds, D. M. (2012). Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments. European Journal of Clinical Microbiology and Infectious Disease, 31, 641–653.

    Article  CAS  Google Scholar 

  • Türetgen, I., Göksay, D., & Çotuk, A. (2009). Comparison of the microbial load of incoming and distal outlet waters from dental unit water systems in Istanbul. Environmental Monitoring and Assessment, 158, 9–14.

    Article  Google Scholar 

  • Uzel, A., Cogulu, D., & Oncag, O. (2008). Microbiological evaluation and antibiotic susceptibility of dental unit water systems in general dental practice. International Journal of Dental Hygiene, 6, 43–47.

    Article  CAS  Google Scholar 

  • Walker, J. T., Bradshaw, D. J., Finney, M., Fulford, M. R., Frandsen, E., Qstergaard, E., et al. (2004). Microbiological evaluation of dental unit water systems in general dental practice in Europe. European Journal of Oral Sciences, 112, 412–418.

    Article  CAS  Google Scholar 

  • Williams, J. F., Molinari, J. A., & Andrews, N. (1996). Microbial contamination of dental unit waterlines: origins and characteristics. Compendium Continuous Education Dentistry, 17, 538–550.

    CAS  Google Scholar 

  • Yang, C. S., & Heinsohn, P. A. (2007). Sampling and analyses of indoor microorganisms. Hoboken: Wiley.

    Book  Google Scholar 

Download references

Acknowledgments

We gratefully thank to Prof. Dr. Ahmet ASAN and Dr. Burhan SEN for the assistance about sharing the laboratory facilities. This work was supported by the “Research Fund of Istanbul University” (project number 1847, UDP–14595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Göksay Kadaifciler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadaifciler, D.G., Cotuk, A. Microbial contamination of dental unit waterlines and effect on quality of indoor air. Environ Monit Assess 186, 3431–3444 (2014). https://doi.org/10.1007/s10661-014-3628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3628-6

Keywords

Navigation