Skip to main content
Log in

Spatial characterization of bark beetle infestations by a multidate synergy of SPOT and Landsat imagery

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Biological infestations in forests, e.g. the insect outbreaks, have been shown as favoured by future climate change trends. In Europe, the European spruce bark beetle (Ips typographus L.) is one of the main agents causing substantial economic disturbances in forests. Therefore, studies on spatio-temporal characterization of the area affected by bark beetle are of major importance for rapid post-attack management. We aimed at spatially detecting damage classes by combining multidate remote sensing data and a non-parametric classification. As study site served a part of the Bavarian Forest National Park (Germany). For the analysis, we used 10 geometrically rectified scenes of Landsat and SPOT sensors in the period between 2001 and 2011. The main objective was to explore the potential of medium-resolution data for classifying the attacked areas. A further aim was to explore if the temporally adjacent infested areas are able to be separated. The random forest (RF) model was applied using the reference data drawn from high-resolution aerial imagery. The results indicate that the sufficiently large patches of visually identifiable damage classes can be accurately separated from non-attacked areas. In contrast to those, the other mortality classes (current year, current year 1 and current year 2 infested classes) were mostly classified with higher commission or omission errors as well as higher classification biases. The available medium-resolution satellite images, combined with properly acquired reference data, are concluded to be adequate tools to map area-based infestations at advanced stages. However, the quality of reference data, the size of infested patches and the spectral resolution of remotely sensed data are the decisive factors in case of smaller areas. Further attempts using auxiliary height information and spatially enhanced data may refine such an approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahern, F.J. (1988). The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine. International Journal of Remote Sensing, 9(9), 1451–1468.

    Article  Google Scholar 

  • Bangdiwala, K. (1987). Using SAS software graphical procedures for the observer agreement chart. In Proceedings of SAS user’s group international conference (Vol. 12, pp. 1083–1088).

  • Bivand (2013). R-package maptools userguide. http://cran.r-project.org/web/packages/maptools/maptools.pdf. Accessed 28 Feb 2013.

  • Breiman, L. (1984). Classification and regression trees. Wadsworth statistics/probability series. Belmont: Wadsworth International Group.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Breiman, L., & Cutler, A. (2008). Random forests. Tech. rep. http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.htm. Accessed 15 Dec 2012.

  • Bright, B.C., Hicke, J.A., Hudak, A.T. (2012a). Estimating aboveground carbon stocks of a forest affected by mountain pine beetle in Idaho using lidar and multispectral imagery. Remote Sensing of Environment, 124, 270–281.

    Article  Google Scholar 

  • Bright, B.C., Hicke, J.A., Hudak, A.T. (2012b). Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho. Environmental Research Letters, 7, 045,702.

    Article  Google Scholar 

  • Coggins, S.B., Coops, N.C., Wulder, M.A. (2010). Estimates of bark beetle infestation expansion factors with adaptive cluster sampling. International Journal of Pest Management, 57(1), 11–21.

    Article  Google Scholar 

  • Coggins, S.B., Coops, N.C., Hilker, T., Wulder, M.A. (2013). Augmenting forest inventory attributes with geometric optical modelling in support of regional susceptibility assessments to bark beetle infestations. International Journal of Applied Earth Observation and Geoinformation, 21, 444–452.

    Article  Google Scholar 

  • Congalton, R.G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.

    Article  Google Scholar 

  • Coops, N.C., Johnson, M., Wulder, M.A., White, J.C. (2006). Assessment of quickbird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 103(1), 67–80.

    Article  Google Scholar 

  • Dennison, P.E., Brunelle, A.R., Carter, V.A. (2010). Assessing canopy mortality during a mountain pine beetle outbreak using geoeye-1 high spatial resolution satellite data. Remote Sensing of Environment, 114(11), 2431–2435.

    Article  Google Scholar 

  • Edburg, S., Hicke, J., Brooks, P., Pendall, E., Ewers, B., Norton, U., Gochis, D., Gutmann, E., Meddens, A. (2012). Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Frontiers in Ecology and the Environment, 10(8), 416–424.

    Article  Google Scholar 

  • Fassnacht, F.E., Latifi, H., Koch, B. (2012). An angular vegetation index for imaging spectroscopy data: preliminary results on forest damage detection in the Bavarian National Park, Germany. International Journal of Applied Earth Observation and Geoinformation, 19, 308–321.

    Article  Google Scholar 

  • Franklin, S.E., Wulder, M.A., Skakun, R.S., Carroll, A.L. (2003). Mountain pine beetle red-attack forest damage classification using stratified Landsat TM data in British Columbia, Canada. Photogrammetric Engineering and Remote Sensing, 69(3), 283–288.

    Article  Google Scholar 

  • Gregoire, J.C., & Evans, H. (2004). Damage and control of bawbilt organisms an overview. In F. Lieutier, K.R. Day, A. Battisti, J.C. Gregoire, H.F. Evans (Eds.), Bark and wood boring insects in living trees in Europe, a synthesis (pp. 19–37). Springer Netherlands.

  • Heurich, M., Fahse, L., Reinelt, A. (2001). Die buchdruckermassenvermehrung im nationalpark bayerischer wald. In Waldentwicklung im bergwald nach windwurf und borkenkäferbefall. Tech. rep., Wissenschaftliche Schriftenreihe der Nationalparkverwaltung Bayerischer Wald. Band 16.

  • Heurich, M., Ochs, T., Andresen, T., Schneider, T. (2010). Object-orientated image analysis for the semi-automatic detection of dead trees following a spruce bark beetle (Ips typographus) outbreak. European Journal of Forest Research, 129, 313–324.

    Article  Google Scholar 

  • Hicke, J., & Logan, J. (2009). Mapping whitebark pine mortality caused by a mountain pine beetle outbreak with high spatial resolution satellite imagery. International Journal of Remote Sensing, 30(17), 4427–4441.

    Article  Google Scholar 

  • Hicke, J.A., Allen, C.D., Desai, A.R., Dietze, M.C., Hall, R.J., (Ted) Hogg, E.H., Kashian, D.M., Moore, D., Raffa, K.F., Sturrock, R.N., Vogelmann, J. (2012). Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, 18(1), 7–34.

    Article  Google Scholar 

  • Hijmans, R., & Van Etten, J. (2012). R-package Raster userguide. R Development Core Team. http://cran.r-project.org/web/packages/raster/raster.pdf. Accessed 28 February 2013.

  • Hudak, A.T., Crookston, N.L., Evans, J.S., Hall, D.E., Falkowski, M.J. (2008). Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112(5), 2232–2245. Earth Observations for Terrestrial Biodiversity and Ecosystems Special Issue.

    Article  Google Scholar 

  • Jactel, H., & Vodde, F. (2011). Prevalence of biotic and abiotic hazards in European forests. Tech. Rep. 86, EFI Technical Report 66. European Forest Institute.

  • Kautz, M., Dworschak, K., Gruppe, A., Schopf, R. (2011). Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions. Forest Ecology and Management, 262(4), 598–608.

    Article  Google Scholar 

  • Keitt, T., Rowlingson, B., Bivand, R. (2013). R package rgdal userguide. http://cran.r-project.org/web/packages/rgdal/rgdal.pdf. Accessed 28 Feb 2013.

  • Klein, W. (1982). Estimating bark beetle-killed lodgepole pine with high altitude panoramic photography. Photogrammetric Engineering and Remote Sensing, 48, 733–737.

    Google Scholar 

  • Koski, V., Skroppa, T., Paule, L., Wolf, H., Turok, J. (1997). Technical guidelines for genetic conservation of Norway spruce (Picea abies (L.) Karst.). Tech. rep., European Forest Genetic Ressources Programme.

  • Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T., Carroll, A.L., Ebata, T., Safranyik, L. (2008). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452(7190), 987–990.

    Article  CAS  Google Scholar 

  • Latifi, H., & Koch, B. (2012). Evaluation of most similar neighbour and random forest methods for imputing forest inventory variables using data from target and auxiliary stands. International Journal of Remote Sensing, 33(21), 6668–6694.

    Article  Google Scholar 

  • Latifi, H., Fassnacht, F., Koch, B. (2012). Forest structure modeling with combined airborne hyperspectral and LiDAR data. Remote Sensing of Environment, 121(0), 10–25.

    Article  Google Scholar 

  • Lausch, A., Fahse, L., Heurich, M. (2011). Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: a long-term quantitative landscape-level analysis. Forest Ecology and Management, 261(2), 233–245.

    Article  Google Scholar 

  • Leica Geosystems (2002). Stereo analyst user’s guide. Leica Geosystems GIS & Mapping Division, Atlanta, GA, USA.

    Google Scholar 

  • Liaw, A., & Wiener, M. (2012). R-package random forest userguide. R Development Core Team. http://cran.r-roject.org/web/packages/randomForest/randomForest.pdf. Accessed 28 February 2013.

  • Marx, A. (2010). Detection and classification of bark beetle infestation in pure norway spruce stands with multi-temporal rapideye imagery and data mining techniques. PFG Photogrammetrie, Fernerkundung, Geoinformation, 2010(4), 243–252.

    Article  Google Scholar 

  • Meddens, A.J., Hicke, J.A., Vierling, L.A. (2011). Evaluating the potential of multispectral imagery to map multiple stages of tree mortality. Remote Sensing of Environment, 115(7), 1632–1642.

    Article  Google Scholar 

  • Meddens, A.J., Hicke, J.A., Vierling, L.A., Hudak, A.T. (2013). Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery. Remote Sensing of Environment, 132, 49–58.

    Article  Google Scholar 

  • Meigs, G.W., Kennedy, R.E., Cohen, W.B. (2011). A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sensing of Environment, 115(12), 3707–3718.

    Article  Google Scholar 

  • Meyer, D., Zeileis, A., Hornik, K., Friendly, M. (2012). R-package vcd userguide. R Development Core Team. http://http://cran.r-project.org/web/packages/vcd/vcd.pdf. Accessed 28 February 2013.

  • Mitchell, M. (2011). Bias of random forest out-of-bag (OOB) error for certain input parameters. Open Journal of Statistics, 1, 205–211.

    Article  Google Scholar 

  • Moravec, I., Cudlin, P., Polak, T., Havlicek, F. (2002). Spruce bark beetle (Ips typographus L.) infestation and norway spruce status: is there a causal relationship? Wiss Mitt Bohmerwald, 8, 255–264.

    Google Scholar 

  • Pebesma et al. (2012). R-package sp userguide. R Development Core Team. http://cran.r-project.org/web/packages/sp/sp.pdf. Accessed 28 February 2013.

  • Pfeifer, E.M., Hicke, J.A., Meddens, A., Arjan, J.H. (2011). Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States. Global Change Biology, 17(1), 339–350.

    Article  Google Scholar 

  • R Development Core Team (2011). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org. Accessed 25 Nov 2012.

  • Rall, H., & Martin, K. (2002). Luftbildauswertung zur waldentwicklung im nationalpark bayerischer wald 2001. Tech. rep., Administration of NP Bavarian Forest (Ed.), Berichte aus dem Nationalpark, 1.

  • Röder, J., Ortiz, S., Lyytikäinen-Saarenmaa, P., Holopainen, M., Hyypää, J., Karjalainen, M., Koch, B. (2009). EO application development data user element, due innovators ii—insect combat. Deliverable 2. project: Esrin/ao/1-5781/08/i-ec, Deliverable 2. Project: ESRIN/AO/1-5781/08/I-EC.

  • Skakun, R.S., Wulder, M.A., Franklin, S.E. (2003). Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage. Remote Sensing of Environment, 86(4), 433–443.

    Article  Google Scholar 

  • Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P. (2003). Random forest: a classification and regression tool for compound classification and qsar modeling. Journal of Chemical Information and Computer Sciences, 43(6), 1947–1958.

    Article  CAS  Google Scholar 

  • Tinker, D.B., & Knight, D.H. (2000). Coarse woody debris following fire and logging in Wyoming lodgepole pine forests. Ecosystems, 3, 472–483.

    Article  Google Scholar 

  • Vogelmann, J.E., Tolk, B., Zhu, Z. (2009). Monitoring forest changes in the southwestern United States using multitemporal Landsat data. Remote Sensing of Environment, 113(8), 1739–1748.

    Article  Google Scholar 

  • Wallace, J., Li, M., Traylen, A. (2009). Forest vegetation monitoring and runoff in water supply catchments affected by drying climate. In Geoscience and remote sensing symposium, 2009 IEEE international, IGARSS 2009 (Vol. 3, pp. III–939–III–942).

  • Wermelinger, B. (2004). Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. Forest Ecology and Management, 202(1–3), 67–82.

    Article  Google Scholar 

  • White, J., & Wulder, M. (2006). Detecting and mapping mountain pine beetle red-attack damage with SPOT-5 10-M multispectral imagery. Mountain Pine Beetle Initiative Working Paper Series, Pacific Forestry Centre.

  • Wulder, M., White, J., Bentz, B., Alvarez, M., Coops, N. (2006). Estimating the probability of mountain pine beetle red-attack damage. Remote Sensing of Environment, 101(2), 150–166.

    Article  Google Scholar 

  • Wulder, M.A., Dymond, C.C., White, J.C. (2005). Remote sensing in the survey of mountain pine beetle impacts: review and recommendations. Information report bc-x-401., Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre.

  • Wulder, M.A., White, J.C., Carroll, A.L., Coops, N.C. (2009). Challenges for the operational detection of mountain pine beetle green attack with remote sensing. The Forestry Chronicle, 85(1), 32–38. http://pubs.cif-ifc.org/doi/pdf/10.5558/tfc85032-1.

    Google Scholar 

  • Xie, Y., Sha, Z., Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1(1), 9–23. http://jpe.oxfordjournals.org/content/1/1/9.full.pdf+html.

    Article  Google Scholar 

  • Yu, X., Hyypp, J., Vastaranta, M., Holopainen, M., Viitala, R. (2011). Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 28–37.

    Article  Google Scholar 

Download references

Acknowledgements

This study was accomplished using the multidate SPOT data provided by the Planet Action initiative launched by Astrium GEO and SPOT Image. We appreciate the BFNP administration, in particular Dr. Jörg Müller and Dr. Marco Heurich, for providing permission to use the polygon-based infestation data for validation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hooman Latifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latifi, H., Schumann, B., Kautz, M. et al. Spatial characterization of bark beetle infestations by a multidate synergy of SPOT and Landsat imagery. Environ Monit Assess 186, 441–456 (2014). https://doi.org/10.1007/s10661-013-3389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3389-7

Keywords

Navigation