Skip to main content

Advertisement

Log in

Top-down and bottom-up inventory approach for above ground forest biomass and carbon monitoring in REDD framework using multi-resolution satellite data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study deals with the future scope of REDD (Reduced Emissions from Deforestation and forest Degradation) and REDD+ regimes for measuring and monitoring the current state and dynamics of carbon stocks over time with integrated geospatial and field-based biomass inventory approach. Multi-temporal and multi-resolution geospatial synergic approach incorporating satellite sensors from moderate to high resolution with stratified random sampling design is used. The inventory process involves a continuous forest inventory to facilitate the quantification of possible CO2 reductions over time using statistical up-scaling procedures on various levels. The combined approach was applied on a regional scale taking Himachal Pradesh (India), as a case study, with a hierarchy of forest strata representing the forest structure found in India. Biophysical modeling implemented revealed power regression model as the best fit (R 2 = 0.82) to model the relationship between Normalized Difference Vegetation Index and biomass which was further implemented to calculate multi-temporal above ground biomass and carbon sequestration. The calculated value of net carbon sequestered by the forests totaled to 11.52 million tons (Mt) over the period of 20 years at the rate of 0.58 Mt per year since 1990 while CO2 equivalent reduced from the environment by the forests under study during 20 years comes to 42.26 Mt in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Augusteijn, M. F., Clemens, L. E., & Shaw, K. A. (1995). Performance evaluation of texture measures for ground cover identification in satellite images of a neural network classifier. IEEE Transactions on Geoscience and Remote Sensing, 33, 616–625.

    Article  Google Scholar 

  • Baccini, A., Friedl, A. M. A., Woodcock, C. E., & Warbington, R. (2004). Forest biomass estimation over regional scales using multisource data. Geophysical Research Letters, 31, L10501.

    Article  Google Scholar 

  • Biomass ECV report (2009). Assessment of the status of the development of the standards for the Terrestrial Essential Climate Variables. 38–41.

  • Boyd, D. S., Foody, G. M., & Curran, P. J. (1999). The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0–5.0 μm). International Journal of Remote Sensing, 20, 1017–1023.

    Article  Google Scholar 

  • Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science Journal, 35, 881–902.

    Google Scholar 

  • Canadell, J. G., LeQué, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., & Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Science of the United States of America, 104, 18866–18870. doi:10.1073/pnas.0702737104.

    Article  CAS  Google Scholar 

  • Chacko, V. J. (1965). A manual on sampling techniques for forest surveys. Delhi: Manager of Publications.

    Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A revised survey of forest types of India. New Delhi: Government of India Publication.

    Google Scholar 

  • Chavez, P. S. (1996). Image-based atmospheric corrections—revisited and improved. Photogrammetric Engineering and Remote Sensing, 62, 1025–1036.

    Google Scholar 

  • Chen, S., & Rao, P. (2009). Regional land degradation mapping using MODIS data and decision tree (DT) classification in a transition zone between grassland and cropland of northeast China. In: Information Science and Engineering (ICISE), 2009 1st International Conference, Nanjing, China, 26–28th December 2009 (pp. 1395–1398). doi:10.1109/ICISE.2009.878.

  • Chhabra, A., Palria, S., & Dadhwal, V. K. (2002). Growing stock-based forest biomass estimate for India. Biomass and Bioenergy, 22, 187–194.

    Article  Google Scholar 

  • Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, C., Heinze, E., Holland, D., Jacob, U., Lohmann, S., Ramachandran, P. L., DaSilva Dias, D., Wofsy, S. C., & Zhang, X. (2007). Couplings between changes in the climate system and biogeochemistry. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignorand, & H. L. Miller (Eds.), Climate Change 2007 (pp. 541–584). Cambridge: Cambridge University Press.

    Google Scholar 

  • Dong, J., Kaufmann, R. K., Myneni, R. B., Tucker, C. J., Kauppi, P. E., Liski, J., Buermann, W., Alexeyev, V., & Hughes, M. K. (2003). Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment, 84, 393–410.

    Article  Google Scholar 

  • Fearnside, P. M., & Laurance, W. F. (2003). Comment on ‘Determination of deforestation rates of the world’s humid tropical forests’. Science, 299, 1015.

    Article  Google Scholar 

  • Fearnside, P. M., & Laurance, W. F. (2004). Tropical deforestation and greenhouse gas emissions. Ecological Applications, 14, 982–986.

    Article  Google Scholar 

  • Food and Agricultural Organization of the United Nations (FAO). (2005). FAO Statistical database 2005. Source: http://faostat.fao.org.

  • Foody, G. M., Cutler, M. E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D. S., & Douglas, I. (2001). Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 10, 379–387.

    Article  Google Scholar 

  • Foody, G. M., Boyd, D. S., & Cutler, M. E. J. (2003). Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85, 463–474.

    Article  Google Scholar 

  • Forest Survey of India (FSI). (2009). State of forest report (pp. 90–93). Dehradun: Ministry of Environment and Forests.

    Google Scholar 

  • Franklin, S. E., & Peddle, D. R. (1989). Spectral texture for improved class discrimination in complex terrain. International Journal of Remote Sensing, 10, 1437–1443.

    Article  Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters. doi:10.1088/1748-9326/2/4/045023. online access: erl.iop.org.

    Google Scholar 

  • Hakkila, P. (1989). Utilization of residual forest biomass. Berlin: Springer.

    Book  Google Scholar 

  • Hernandez, R.P., Koohafkan, P., & Antoine, J. (2004). Assessing carbon stocks and modelling win-win scenarios of carbon sequestration through land-use changes. FAO report. pp. 10–27.

  • Houghton, R. A. (2005). Tropical deforestation as a source of greenhouse gas emissions. In P. Mutinho & S. Schwartzman (Eds.), Tropical deforestation and climate change (pp. 13–22). Belem: IPAM.

    Google Scholar 

  • Indian Council for Forestry Research and Education (ICFRE). (2007). Views from ICFRE, Dehradun, India (an observer organization) to UNFCCC on REDD (p. 5). Dehradun: ICFRE, Government of India.

    Google Scholar 

  • Intergovernmental Panel for Climate Change (IPCC). (2003). Good practice guidance for land use land use change and forestry. Hayama: IGES.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2006). Agriculture, forestry and other land use. In: H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe (Eds.). IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. Japan: IGES. (http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html).

  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2007). Remote sensing and image interpretation (5th ed., pp. 491–624). Singapore: Wiley.

    Google Scholar 

  • Lu, D. (2005). Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. International Journal of Remote Sensing, 26, 2509–2525.

    Article  Google Scholar 

  • Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27, 1297–1328.

    Article  Google Scholar 

  • Lucas, R. M., Curran, P. J., Honzak, M., Foody, G. M., DoAmaral, I., & Amaral, S. (1998). The contribution of remotely sensed data in the assessment of the floristic composition, total biomass and structure of Amazonian tropical secondary forests. In C. Gascon & P. Moutinho (Eds.), Regeneracao Florestal: Pesquisas na Amazonia (pp. 61–82). Manaus: INPA.

    Google Scholar 

  • Luckman, A., Baker, J. R., Kuplich, T. M., Yanasse, C. C. F., & Frery, A. C. (1997). A study of the relationship between radar backscatter and regenerating forest biomass for space borne SAR instrument. Remote Sensing of Environment, 60, 1–13.

    Article  Google Scholar 

  • Luckman, A., Baker, J. R., Honzák, M., & Lucas, R. M. (1998). Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics. Remote Sensing of Environment, 63, 126–139.

    Article  Google Scholar 

  • Malhi, Y., & Grace, J. (2000). Tropical forests and atmospheric carbon dioxide. Trends in Ecology & Evolution, 15, 332–337.

    Article  Google Scholar 

  • Marceau, D. J., Howarth, P. J., Dubois, J. M., & Gratton, D. J. (1990). Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery. IEEE Transactions on Geoscience and Remote Sensing, 28, 513–519.

    Article  Google Scholar 

  • Markham, B. L., & Barker, J. L. (1986). Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures. EOSAT Technical Notes, 1, 3–8.

    Google Scholar 

  • Ministry of Environment and Forests (MoEF). (2009). Climate change negotiations: India’s submissions to the United Nations Framework Convention on Climate Change (p. 58). New Delhi: Government of India.

    Google Scholar 

  • Mund, M., Kummetz, E., Hein, M., Bauer, G. A., & Schulze, E. D. (2002). Growth and carbon stocks of a spruce forest chronosequence in central Europe. Forest Ecology and Management, 171, 275–296.

    Article  Google Scholar 

  • Nelson, R., Jimenez, J., Schnell, C. E., Hartshorn, G. S., Gregoire, T. G., & Oderwald, R. (2000). Canopy height models and airborne lasers to estimate forest biomass: two problems. International Journal of Remote Sensing, 21, 2153–2162.

    Article  Google Scholar 

  • Pandya, M. R., Singh, R. P., Murali, K. R., Babu, P. N., Kirankumar, A. S., & Dadhwal, V. K. (2002). Bandpass solar exo-atmospheric irradiance and Rayleigh optical thickness of sensors onboard Indian Remote Sensing satellites-1B, 1C, 1D and P4. IEEE Transactions on Geoscience and Remote Sensing, 40, 714–718.

    Article  Google Scholar 

  • Phua, M. H., & Saito, H. (2003). Estimation of biomass of a mountainous tropical forest using Landsat TM data. Canadian Journal of Remote Sensing, 29, 429–440.

    Article  Google Scholar 

  • Plugge, D., Baldauf, T., Ratsimba, H. R., Rajoelison, G., & Köhl, M. (2010). Combined biomass inventory in the scope of REDD (Reducing Emissions from Deforestation and Forest Degradation). Madagascar Conservation and Development, 5, 23–34.

    Google Scholar 

  • Podest, E., & Saatchi, S. (2002). Application of multiscale texture in classifying JERS-1 radar data over tropical vegetation. International Journal of Remote Sensing, 23, 1487–1506.

    Article  Google Scholar 

  • Popescu, S. C., Wynne, R. H., & Nelson, R. F. (2003). Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing, 29, 564–577.

    Article  Google Scholar 

  • Ravindranath, N. H., & Ostwald, M. (2008). Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects (pp. 41–44, 181–199). Heidelberg: Springer.

  • Riedel, T. (2008). Evaluierung alternative Stichprobenkonzepte für die Bundeswaldinventur. Unpublished Ph.D. dissertation. Department Biologie der Fakultät für Mathematik, Informatik und Naturwissenschaften. Universität Hamburg.

  • Rignot, E. J., Zimmermann, R., & vanZyl, J. J. (1995). Spaceborne applications of P band imaging radars for measuring forest biomass. IEEE Transactions on Geoscience and Remote Sensing, 33, 1162–1169.

    Article  Google Scholar 

  • Roy, P. S., & Ravan, S. A. (1996). Biomass estimation using satellite remote sensing data—an investigation on possible approaches for natural forest. Journal of Biosciences, 21, 535–561.

    Article  Google Scholar 

  • Sader, S. A., Waide, R. B., Lawrence, W. T., & Joyce, A. T. (1989). Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data. Remote Sensing of Environment, 28, 143–156.

    Article  Google Scholar 

  • Santos, J. R., Lacruz, M. S. P., Araujo, L. S., & Keil, M. (2002). Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data. International Journal of Remote Sensing, 23, 1217–1229.

    Article  Google Scholar 

  • Santos, J. R., Freitas, C. C., Araujo, L. S., Dutra, L. V., Mura, J. C., Gama, F. F., Soler, L. S., & Sant’ Anna, S. J. S. (2003). Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest. Remote Sensing of Environment, 87, 482–493.

    Article  Google Scholar 

  • Schulze, E. D. (2000). Carbon and nitrogen cycling in European forest ecosystems. Heidelberg: Springer.

    Book  Google Scholar 

  • Sharma, R. K., Lall, P., & Hofstad, O. (2008). Forest biomass density, utilization and production dynamics in a western Himalayan watershed. Journal of Forestry Research, 19, 171–180.

    Article  Google Scholar 

  • Sharma, L. K., Pandey, P. C., & Nathawat, M. S. (2012). Assessment of land consumption rate with urban dynamics change using geospatial techniques. Journal of Land Use Science, 7, 135–148.

    Article  CAS  Google Scholar 

  • Sinha, S., Sharma, L. K., & Nathawat, M. S. (2012). Tigers losing grounds: impact of anthropogenic occupancy on tiger habitat suitability using integrated geospatial-fuzzy techniques. The Ecoscan, 1, 259–263.

    Google Scholar 

  • Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90, 434–440.

    Article  Google Scholar 

  • Steininger, M. K. (2000). Satellite estimation of tropical secondary forest aboveground biomass data from Brazil and Bolivia. International Journal of Remote Sensing, 21, 1139–1157.

    Article  Google Scholar 

  • Stephens, B. S., et al. (2007). Weak Northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316, 1732–1735.

    Article  CAS  Google Scholar 

  • Trigg, S. N., Curran, L. M., & McDonald, A. K. (2006). Utility of Landsat 7 satellite data for continued monitoring of forest cover change in protected areas in southeast Asia. Singapore Journal of Tropical Geography, 27, 49–66.

    Article  Google Scholar 

  • United Nations Framework Convention on Climate Change (UNFCCC) (1998, 2006). Kyoto Protocol to the United Nations Framework Convention on Climate Change. United Nations. Source: http://unfccc.int.

  • van der Meer, F. (1996). Spectral mixture modeling and spectral stratigraphy in carbonate lithofacies mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 51, 150–162.

    Article  Google Scholar 

  • van der Werf, G. R., Morton, D. C., DeFries, R. S., Olivier, J. G. J., Kasibhatla, P. S., Jackson, R. B., Collatz, G. J., & Randerson, J. T. (2009). CO2 emissions from forest loss. Nature Geoscience, 2, 737–738.

    Article  Google Scholar 

  • Wirth, C., Czimczik, C. I., & Schulze, E. D. (2002). Beyond annual budgets: carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus, 54B, 611–630.

    CAS  Google Scholar 

  • Wirth, C., Schumacher, J., & Schulze, E. (2004). Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology, 24, 121–139.

    Article  Google Scholar 

  • Woodcock, C. E., Collins, J. B., Jakabhazy, V. D., Li, X., Macomber, S., & Wu, Y. (1997). Inversion of the Li–Strahler canopy reflectance model for mapping forest structure. IEEE Transactions on Geoscience and Remote Sensing, 35, 405–414.

    Article  Google Scholar 

  • Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., Moine, J. L., & Ryu, R. (2004). Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 93, 402–411.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi Kant Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, L.K., Nathawat, M.S. & Sinha, S. Top-down and bottom-up inventory approach for above ground forest biomass and carbon monitoring in REDD framework using multi-resolution satellite data. Environ Monit Assess 185, 8621–8637 (2013). https://doi.org/10.1007/s10661-013-3199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3199-y

Keywords

Navigation