Skip to main content
Log in

Ozone facilitated dechlorination of 2-chloroethanol and impact of organic solvents and activated charcoal

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The ozone-initiated oxidation of 2-chloroethanol was followed by monitoring the consumption of the halogenated organic substrate. Gas chromatographic analysis of the ozonated products showed an increase in conversion from about 1 % after 3 h of ozone treatment to about 22 % after 12 h. The yields of major ozonated products identified and quantified namely acetaldehyde, acetic acid, and chloride ion increased proportionately as a function of ozone treatment time. The percent conversion of 2-chloroethanol in the presence of acetic acid or ethyl acetate were found to be higher than those under solvent-free conditions with similar products obtained. The use of activated charcoal during the ozonolyis of 2-chloroethanol showed a significant increase in the percent conversion of the substrate compared to solvent free ozonation. Based on the experimental findings, the overall mechanism for the reaction between 2-chloroethanol and ozone is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  • Abumaizar, R. J., Kocher, W., & Smith, E. H. (1998). Biofiltration of BTEX contaminated air streams using compost-activated carbon filter media. J Hazard Mater, 60, 111–126.

    Article  CAS  Google Scholar 

  • Baig, S., Coulomb, I., Courant, P., & Liechti, P. (1999). Treatment of landfill leachates. Ozone Sci Eng, 21, 1–22.

    Article  CAS  Google Scholar 

  • Beltran, F. J., Rivas, J., Alvarez, P., & Montero de Espinosa, R. (2002). Kinetics of heterogeneous catalytic ozone decomposition in water on an activated carbon. Ozone Sci Eng, 24(4), 227–237.

    Article  CAS  Google Scholar 

  • Bollyky, L. J. (1981). The mass transfer of ozone into water: energy requirements. Ozone Sci Eng, 3, 181–210.

    Article  CAS  Google Scholar 

  • Chang, C. Y., & Chen, J. N. (1995). Application of a fluorinated solvent to the conventional ozonation process for the destruction of 2,4-dichlorophenol. Environ Int, 21, 305–311.

    Article  CAS  Google Scholar 

  • Chetty, E. C., Southway, C., & Jonnalagadda, S. B. (2011). Ozone initiated oxidation of 1,2-dichlorobenzene in aqueous systems. Oxidation Commn, 34(4), 962–976.

    CAS  Google Scholar 

  • Chetty, E. C., Dasireddy, V. B., Maddila, S., & Jonnalagadda, S. B. (2012a). Efficient conversion of 1,2-dichlorobenzene to mucochloric acid with ozonation caltalysed by V2O5 loaded metal oxides. Appl Catal B, 117–118, 18–28.

    Google Scholar 

  • Chetty, E. C., Maddila, S., Southway, C., & Jonnalagadda, S. B. (2012b). Ozone initiated Ni/metal oxide catalyzed conversion of 1,2-dichlorobenzene to mucochloric acid in aqueous solutions. Indus & Eng Chem Res, 51, 2864–2873.

    Article  CAS  Google Scholar 

  • Elovitz, M. S., & von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone Sci Eng, 21(3), 239–260.

    Article  CAS  Google Scholar 

  • Fishbein L., (1988), International Agency for Research on Cancer, IARC Scientific Publications No. 85, 109.

  • Galutkina, K. A., Rubinskaya, E. V., & Nemchenko, A. G. (1977). Reactions of oxalic and acetic acid with ozone in an aqueous medium. J App Chem (USSR), 50, 2498–2500.

    Google Scholar 

  • Gomes, M., Razumovskii, S. D., & Zaikov, G. E. (1984). Effect of solvent polarity on the rate of ozone reaction with unsaturated compounds. Int J Chem Kinetics, 16, 1–5.

    Article  CAS  Google Scholar 

  • Gounden, A. N., & Jonnalagadda, S. B. (2012). Oxidative degradation of m-xylene in the presence and absence of solvents by ozonation. Fresenius Environ B, 21(6), 1427–1435.

    CAS  Google Scholar 

  • Graham, N., Chu, W., & Lau, C. (2003). Observations of 2,4,6-trichlorophenol degradation by ozone. Chemosphere, 51(4), 237–243.

    Article  CAS  Google Scholar 

  • Henry, H., Zador, M., & Fliszar, S. (1973). A quantitative investigation of the ozonolysis reaction. XVIII. A kinetic study of the ozone attack on phenylethylenes. Can J Chem, 51, 3398.

    Article  CAS  Google Scholar 

  • Janssen, D. B., Keuning, S., & Witholt, B. (1987). Involvement of a quinoprotein alcohol dehydrogenase and an NAD-dependent aldehyde dehydrogenase in 2-chloroethanol metabolism in Xanthobacter autotrophicus GJ 10. J Gen Microbiol, 133, 85–92.

    CAS  Google Scholar 

  • Janssen, D. B., Scheper, A., Dijkhuizen, L., & Witholt, B. (1985). Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ 10. Appl Environ Microbiol, 49, 673–677.

    CAS  Google Scholar 

  • Jans, U., & Hoigne, J. (1998). Activated carbon black catalyzed transformation of aqueous ozone into OH− radicals. Ozone Sci Eng, 20, 67–90.

    Article  CAS  Google Scholar 

  • Johnston P. and McCrea I., (1992), The effects of organochlorines on aquatic ecosystems, Greenpeace International.

  • Jonnalagadda, S. B., Pullabhotla, V. S. R., Maddila, S., & Chetty, E. C. (2012). Ozone for drinking and wastewater treatment and for value added products, (review). Int J Chem, 1, 119–129.

    CAS  Google Scholar 

  • Jorio, H., Bibeau, L., Viel, G., & Heitz, M. (2000). Effects of gas flow rate and inlet concentration on xylene vapors biofiltration. Chem Eng J, 76(3), 209.

    Article  CAS  Google Scholar 

  • Kulkarni, P. S., Crespo, J. G., & Alfonso, C. A. M. (2008). Dioxin sources and current remediation technologies—a review. Environ Intern, 34, 139–153.

    Article  CAS  Google Scholar 

  • Liu, G. Y. T., Richey, W. F., & Betso, J. E. (2000). Chloroyhdrins, Ullmann’s encyclopedia of industrial chemistry. New York: Wiley.

    Google Scholar 

  • Ma, J., Sui, M. H., Chen, Z. L., & Wang, L. N. (2004). Degradation of refractory organic pollutants by catalytic ozonation-activated carbon and Mn-loaded activated carbon as catalysts. Ozone Sci Eng, 26, 3–10.

    Article  CAS  Google Scholar 

  • Maddila, S., & Jonnalagadda, S. B. (2013). Dechlorination of tetrachloro-o-benzoquinone by ozonation catalysed by cesium loaded metal oxides. Appl Cat B. doi:10.1016/ j.apcatb.2013.02.017.

    Google Scholar 

  • McCann, J., Simmon, V., Streitwieser, D., & Ames, B. N. (1975). Mutagenicity of chloroacetaldehyde (ethylene dichloride), chloroethanol (ethylene chlorohydrin), vinyl chloride and cyclophosphamide. Proc Natl Acad Sci USA, 72, 3190.

    Article  CAS  Google Scholar 

  • Nakano, Y., Okawa, K., Nishijima, W., & Okada, M. (2002). Regeneration of granular activated carbon using acetic acid as desorbing solvent for adsorbed trichloroethylene. J Jpn Soc Water Environ, 25, 619–621.

    Article  CAS  Google Scholar 

  • Nakano, Y., Okawa, K., Nishijima, W., & Okada, M. (2003). Ozone decomposition of hazardous chemical substances in organic solvents. Water Res, 37, 2495–2598.

    Article  Google Scholar 

  • Oman, C., & Hynning, P. (1993). Identification of organic compounds in municipal landfill leachates. Environ Pollut, 80, 265–271.

    Article  CAS  Google Scholar 

  • Pace, G., Berton, A., Calligaro, L., Mantovani, A., & Uguagliati, P. (1995). Elucidation of the degradation mechanism of 2-chloroethanol by hydrogen peroxide under ultraviolet irradiation. J Chrom A, 706, 345–351.

    Article  CAS  Google Scholar 

  • Rakness, K., Gordon, G., Langlais, B., Masschelein, W., Matsumoto, N., Richard, Y., et al. (1996). Guidelines for the measurement of ozone concentration in the process gas from an ozone generator. Ozone Sci Eng, 18(3), 209–229.

    Article  CAS  Google Scholar 

  • Reinhart, D. R. (1993). A review of recent studies on the sources of hazardous compounds emitted from solid waste landfills: a U.S. experience. Waste Manage Res, 11, 257–268.

    CAS  Google Scholar 

  • Rivera-Utrilla, J., & Sanchez-Pollo, M. (2002). Ozonation of 1,3,6-naphthalenetrisulphonic acid catalyzed by activated carbon in aqueous phase. Appl Catal B Environ, 39, 319–329.

    Article  CAS  Google Scholar 

  • Rivera-Utrilla, J., Sanchez-Polo, M., Mondaca, M. A., & Zaror, C. A. (2002). Effect of ozone and ozone/activated carbon treatments on genotoxic activity of naphthalene sulphonic acids. J Chem Technol Biotechnol, 77, 883–890.

    Article  CAS  Google Scholar 

  • Rivera-Utrilla, J., & Sanchez-Polo, M. (2004). Ozonation of naphthalene sulphonic acid in the aqueous phase in the presence of basic activated carbons. Langmuir, 20(21), 9217–9222.

    Article  CAS  Google Scholar 

  • Sanchez-Polo, M., von Gunten, U., & Rivera-Utrilla, J. (2005). Efficiency of activated carbon to transform ozone into center dot OH radicals: influence of operational parameters. Wat Res, 39, 3189–3198.

    Article  CAS  Google Scholar 

  • Shigimitu, H. (1995). The foundation and application of ozonation. Japan: Ourin Ltd. Chapter 2.

    Google Scholar 

  • Strotmann, U. J., Pentenga, M., & Janssen, D. B. (1990). Degradation of 2-chloroethanol by wild type and mutants of Pseudomonas putida US2. Arch Microbiol, 154, 294–300.

    Article  CAS  Google Scholar 

  • Stucki, G., & Leisinger, T. (1983). Bacterial degradation of 2-chloroethanol proceeds via 2-chloroacetic acid, F.E.M.S. Microbiol Lett, 16, 123–126.

    Article  CAS  Google Scholar 

  • Vogal, A. (1978). Textbook of Quantitative Inorganic Analysis (4th ed., p. 379). Essex: Longman.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Research Foundation, South Africa, for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekanth B. Jonnalagadda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gounden, A.N., Jonnalagadda, S.B. Ozone facilitated dechlorination of 2-chloroethanol and impact of organic solvents and activated charcoal. Environ Monit Assess 185, 8227–8237 (2013). https://doi.org/10.1007/s10661-013-3169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3169-4

Keywords

Navigation