Skip to main content

Advertisement

Log in

Air quality biomonitoring through pollen viability of Fabaceae

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, pollen viability and germination of three plant species, Cercis siliquastrum L., Robinia pseudoacacia L., and Spartium junceum L., belonging to the Fabaceae family, was evaluated in sites with different intensity of road traffic, constantly monitored with continuous analysers for air pollutants (carbon monoxide (CO), sulphur dioxide (SO2), and nitrogen dioxide (NO2)) by the Municipality of Catania. Two sites, in which road traffic was absent, were selected, too. The percentages of viable pollen by 2,3,5-trypheniltetrazolium chloride (TTC) test ranged from 59.0 to 90.2 % in C. siliquastrum, from 61.5 to 83.5 % in S. junceum and from 67.5 to 84.3 % in R. pseudoacacia. The percentages of germination varied from 41.0 to 72.7 % in C. siliquastrum, from 42.0 to 64.7 % in S. junceum and from 38.3 to 66.3 % in R. pseudoacacia. The highest percentages of viable pollens were found in no-road traffic stations by either TTC or germination tests, while the lowest values were detected in a site characterised by heavy road traffic. In the monitored period (2007–2009), pollen viability, germinability and tube length of C. siliquastrum resulted in a significant negative correlation to CO, SO2 and NO2, whereas data from TTC and germination tests on S. junceum and R. pseudoacacia pollens were not well correlated to air pollutants. The results showed that pollen viability, germination and tube growth in C. siliquastrum were affected by air pollution. S. junceum and R. pseudoacacia were not very influenced by air pollutants, suggesting a different pollen sensitivity of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelgadir, H. A., Johnson, S. D., & Van Staden, J. (2011). Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). South African Journal of Botany. doi:10.1016/j.sajb.2011.10.005.

  • Alcaraz, M. L., Montserrat, M., & Hormaza, J. I. (2011). In vitro pollen germination in avocado (Persea americana Mill.): Optimization of the method and effect of temperature. Scientia Horticulturae, 130, 152–156.

    Article  Google Scholar 

  • Aronne, G. (1999). Effects of relative humidity and temperature stress on pollen viability of Cistus incanus and Myrtus communis. Grana, 38, 364–367.

    Article  Google Scholar 

  • Asma, M. B. (2008). Determination of pollen viability, germination ratios and morphology of eight apricot genotypes. African Journal of Biotechnology, 7(23), 4269–4273.

    Google Scholar 

  • Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31, 11–38.

    Google Scholar 

  • Bassani, M., Pacini, E., & Franchi, G. G. (1994). Humidity stress responses in pollen of anemophilous and entomophilous species. Grana, 33, 146–150.

    Article  Google Scholar 

  • Beyhan, N., & Serdar, U. (2008). Assessment of pollen viability and germinability in some European chestnut genotypes (Castanea sativa L.). Horticultural Science (Prague), 35(4), 171–178.

    Google Scholar 

  • Bolat, I., & Pirlak, L. (1999). An investigation on pollen viability, germination and tube growth in some stone fruits. Turkish Journal of Agriculture and Forestry, 23, 383–388.

    Google Scholar 

  • Cela Renzoni, G., Viegi, L., Stefani, A., & Onnis, A. (1990). Different in vitro germination responses in Pinus pinea pollen from two localities with different level of pollution. Annales Botanici Fennici, 27, 85–90.

    Google Scholar 

  • Chaudhary, V., Rana, A., Chauhan, S., & Prakash, A. (2010). Study of in vitro pollen germination, pollen tube growth and pollen viability in Murraya koenigii L. (Rutaceae). Research Journal of Agricultural Sciences, 1(3), 249–251.

    Google Scholar 

  • Chichiriccò, G., & Picozzi, P. (2007). Reversible inhibition of the pollen germination and the stigma penetration in Crocus vernus ssp. vernus (Iridaceae) following fumigations with NO2, CO, and O3 gases. Plant Biology, 9, 730–735.

    Article  Google Scholar 

  • Comtois, P. (1994). Airborne pollen dispersal and survival on Mount Sutton (Canada). Aerobiologia, 10, 31–37.

    Article  Google Scholar 

  • Comtois, P., & Perfetto, A. (1996). Airborne pollen viability: Meteorogical and pollution determinants. Atti del VII Congresso Nazionale dell’Associazione Italiana di Agrobiologia. Firenze, 97.

  • Dafni, A., & Firmage, D. (2000). Pollen viability and longevity: Practical, ecological and evolutionary implications. Pollen and Pollination, 113–132.

  • Dalkiliç, Z., & Mestav, H. O. (2011). In vitro pollen quantity, viability and germination tests in quinte. African Journal of Biotechnology, 10(73), 16516–16520.

    Google Scholar 

  • Dickinson, H. G. (2000). Pollen stigma interactions: So near yet so. Trends in Genetics, 16, 373–376.

    Article  CAS  Google Scholar 

  • Duro, A., Piccione, V., Scalia, C., & Zampino, D. (2007). Biomonitoraggio della qualità dell’aria nella città di Catania condotto sulla vitalità del polline di alcune Fabaceae. Bollettino Accademia Gioenia Scienze Naturali, 40(367), 155–168.

    Google Scholar 

  • Erickson, A. N., & Markhart, A. H. (2002). Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell & Environment, 25, 123–130.

    Article  Google Scholar 

  • Firmage, D. H., & Dafni, A. (2001). Field tests for pollen viability; a comparative approach. Acta Horticulturae, 561, 87–94.

    Google Scholar 

  • Gottardini, E., Cristofolini, F., Paletti, E., Lazzeri, P., & Pepponi, G. (2004). Pollen viability for air pollution bio-monitoring. Journal of Atmospheric Chemistry, 49, 149–159.

    Article  CAS  Google Scholar 

  • Hedhly, A., Hormaza, J. I., & Herrero, M. (2005). The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biology, 7, 476–483.

    Article  CAS  Google Scholar 

  • Hedhly, A. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany, 74, 9–16.

    Article  Google Scholar 

  • Huang, Z., Zhu, J., Mu, X., & Lin, J. (2004). Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Annals of Botany, 93, 295–301.

    Article  Google Scholar 

  • Iannotti, O., Mincigrucci, G., Bricchi, E., & Fringuelli, G. (2000). Pollen viability as a bio-indicator of air quality. Aerobiologia, 16, 361–365.

    Article  Google Scholar 

  • Ilgin, M., Ergenoglu, F., & Caglar, S. (2007). Viability, germination and amount of pollen in selected Caprifig types. Pakistan Journal of Botany, 39(1), 9–14.

    Google Scholar 

  • Jagadish, S. V. K., Craufurd, P. Q., & Wheeler, T. R. (2007). High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany, 58(7), 1627–1635.

    Article  CAS  Google Scholar 

  • Kang, H. G., Bae, T. W., Jeong, O. C., Sun, H. J., Lim, P. O., & Lee, H. Y. (2009). Evaluation of viability, shedding pattern, and longevity of pollen from genetically modified (GM) herbicide-tolerant and wild-type Zoysiagrass (Zoysia japonica Steud.). Journal of Plant Biology, 52, 630–634.

    Article  CAS  Google Scholar 

  • Kelen, M., & Demirtas, I. (2003). Pollen viability, germination capability and pollen production level of some grape varieties (Vitis vinifera L.). Acta Physiologiae Plantarum, 25(3), 229–233.

    Article  Google Scholar 

  • Keller, T., & Beda, H. (1984). Effects of SO2 on germination of conifer pollen. Environmental Pollution, 33, 237–243.

    CAS  Google Scholar 

  • Khan, S. A., & Perveen, A. (2011). Pollen germination capacity and viability in Lagenaria siceraria (Molina) Standley (Cucurbitaceae). Pakistan Journal of Botany, 43(2), 827–830.

    Google Scholar 

  • Kumari, A., Komal, R., Rajesh, R., & Pandey, A. K. (2009). In vitro pollen germination, pollen tube growth and pollen viability in Trichosanthes dioica Roxb. (Cucurbitaceae). The International Journal of Plant Reproductive Biology, 1(2), 147–151.

    Google Scholar 

  • Lorenzini, G. (1999). Le piante e l’inquinamento dell’aria. Bologna: Edagricole.

    Google Scholar 

  • Montaner, C., Floris, E., & Alvarez, J. M. (2003). Study of pollen cytology and evaluation of pollen viability using in vivo and in vitro test, in Borage (Borago officinalis L.). Grana, 42, 33–37.

    Article  Google Scholar 

  • Mulugeta, D., Maxwell, B. D., & Dyer, W. D. (1994). Kochia (Kochia scoparia) pollen dispersion, viability and germination. Weed Science, 42, 548–552.

    CAS  Google Scholar 

  • Municipality of Catania (2012). http://www.comune.catania.it/il_comune/organizzazione/uffici_comunali/direzioni/ambiente/inquinamento/qualit-dell-aria/. Accessed 15 Feb 2012.

  • Nepi, M., Guarnieri, M., Mugnaini, S., Cresti, L., Pacini, E., & Piotto, B. (2005). A modified FCR test to evaluate pollen viability in Juniperus communis L. Grana, 44, 148–151.

    Article  Google Scholar 

  • Ohnishi, S., Miyoshi, T., & Shirai, S. (2010). Low temperature stress at different flower developmental stages affects pollen development, pollination, and pod set in soybean. Environmental and Experimental Botany, 69, 56–62.

    Article  Google Scholar 

  • Pacini, E., Franchi, G. G., Lisci, M., & Nepi, M. (1997). Pollen viability related to type of pollination in six Angiosperm species. Annals of Botany, 80, 83–87.

    Article  Google Scholar 

  • Parfitt, D. E., & Ganeshan, S. (1989). Comparison of procedures for estimating viability of Prunus pollen. Horticultural Science, 24, 354–356.

    Google Scholar 

  • Peet, M. M., Willits, D. H., & Gardner, R. (1997). Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. Journal of Experimental Botany, 48(306), 101–111.

    Article  CAS  Google Scholar 

  • Pirlak, L., & Güleryüz, M. (2005). Determination of pollen quality and quantity in Cornelian Cherry (Cornus mass L.). Bangladesh Journal of Botany, 34(1), 1–6.

    Google Scholar 

  • Prasad, P. V. V., Boote, K. J., & Allen, L. H., Jr. (2011). Longevity and temperature response of pollen as affected by elevated growth temperature and carbon dioxide in peanut and grain sorghum. Environmental and Experimental Botany, 70, 51–57.

    Article  CAS  Google Scholar 

  • Rezanejad, F. (2007). The effect of air pollution on microsporogenesis, pollen development and soluble pollen proteins in Spartium junceum L. (Fabaceae). Turkish Journal of Botany, 31, 183–191.

    Google Scholar 

  • Rezanejad, F. (2008). The structure and ultra structure of anther epidermis and pollen in Lagerstroemia indica L. (Lythraceae) in response to air pollution. Turkish Journal of Botany, 32, 35–42.

    Google Scholar 

  • Rezanejad, F. (2009). Air pollution effects on structure, proteins and flavonoids in pollen grains of Thuja orientalis L. (Cupressaceae). Grana, 48(3), 205–213.

    Article  Google Scholar 

  • Rodriguez-Riano, T., & Dafni, A. (2000). A new procedure to assess pollen viability. Sexual Plant Reproduction, 12(4), 241–244.

    Article  Google Scholar 

  • Sakata, T., Takahashi, H., Nishiyama, I., & Higashitani, A. (2000). Effects of high temperature on the development of pollen mother cells and microspores in barley Hordeum vulgare L. Journal of Plant Research, 113, 395–402.

    Article  Google Scholar 

  • Shivanna, K. R., Linskens, H. F., & Cresti, M. (1991). Pollen viability and pollen vigor. Theoretical and Applied Genetics, 81(1), 38–42.

    Article  Google Scholar 

  • Stone, J. L., Thomson, J. D., & Dent-Acosta, S. J. (1995). Assessment of pollen viability in hand-pollination experiments: A review. American Journal of Botany, 82, 1186–1197.

    Article  Google Scholar 

  • Sutyemez, M. (2011). Pollen quality, quantity and fruit set of some self-compatible and self-incompatible cherry cultivars with artificial pollination. African Journal of Biotechnology, 10(17), 3380–3386.

    Google Scholar 

  • Taylor, L. P., & Hepler, P. K. (1997). Pollen germination and tube growth. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 461–491.

    Article  CAS  Google Scholar 

  • Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., & Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops: An overview. Environmental and Experimental Botany, 67, 429–443.

    Article  CAS  Google Scholar 

  • Tretyakova, I. N., & Noskova, N. E. (2004). Scotch Pine pollen under conditions of environmental stress. Russian Journal of Ecology, 35(1), 20–26.

    Article  Google Scholar 

  • Tosun, F., & Koyuncu, F. (2007). Investigations of suitable pollinator for 0900 ziraat sweet cherry cv. pollen performance tests, germination tests, germination procedures, in vitro and in vivo pollinations. Horticultural Science (Prague), 34, 47–53.

    Google Scholar 

  • Vižintin, L., & Bohanec, B. (2004). In vitro manipulation of Cucumber (Cucumis sativus L.) pollen and microspores: Isolation procedures, viability tests, germination, maturation. Acta Biologica Cracoviensia Series Botanica, 46, 177–183.

    Google Scholar 

  • Wang, Z. Y., Ge, Y., Scott, M., & Spangenberg, G. (2004). Viability and longevity of pollen from transgenic and nontransgenic tall fescue (Festuca arundinacea) (Poaceae) plants. American Journal of Botany, 91(4), 523–530.

    Article  Google Scholar 

  • Weerakoon, W. M. W., Maruyama, A., & Ohba, K. (2008). Impact of humidity on temperature-induced grain sterility in rice (Oryza sativa L). Journal of Agronomy and Crop Science, 194, 135–140.

    Article  Google Scholar 

  • Young, L. W., Wilen, R. W., & Bonham-Smith, P. C. (2004). High temperature stress of Brassica napus during flowering reduces micro and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany, 55(396), 485–495.

    Article  CAS  Google Scholar 

  • Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959–1968.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Zampino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duro, A., Piccione, V. & Zampino, D. Air quality biomonitoring through pollen viability of Fabaceae. Environ Monit Assess 185, 3803–3817 (2013). https://doi.org/10.1007/s10661-012-2829-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2829-0

Keywords

Navigation