Skip to main content
Log in

High-performance liquid chromatography method for determination of hydrogen peroxide in aqueous solution and application to simulated Martian soil and related materials

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A new method for determination of hydrogen peroxide (H2O2) is described. H2O2 reacts with iodide in the presence of ammonium molybdate and vanillic acid resulting in the formation of iodovanillic acid which is quantified by reversed-phase high-performance liquid chromatography (HPLC) and detected by UV absorption at 280 nm. The method provides a detection limit of ∼0.1 μM and is easy to implement. Iodovanillic acid is stable, allowing multiple measurements of the same sample, and the separation power of the HPLC yields high selectivity against potential interferences. This method will be useful for many environmental applications. The method has been applied to quantify the photochemical production of H2O2 by aqueous suspensions of various minerals and soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andreozzi, R., Caprio, V., Insola, A., & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53, 51–59.

    Article  CAS  Google Scholar 

  • Bader, H., Sturzenegger, V., & Hoigné, J. (1988). Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-p-phenylenediamine (DPD). Water Research, 22(9), 1109–1115.

    Article  CAS  Google Scholar 

  • Bou, R., Codony, R., Alba, T., Decker, E., & Guardiola, F. (2008). Determination of hydroperoxides in foods and biological samples by the ferrous oxidation–xylenol orange method: a review of factors that influence the methods performance. Analytical Biochemistry, 377, 1–15.

    Article  CAS  Google Scholar 

  • Boveris, A., Nozomo, O., & Chance, B. (1972). The cellular production of hydrogen peroxide. Biochemical Journal, 128, 617–630.

    CAS  Google Scholar 

  • Boveris, A., Martino, E., & Stoppani, A. O. M. (1977). Evaluation of the horseradish peroxidase–scopoletin method for the measurement of hydrogen peroxide formation in biological system. Analytical Biochemistry, 80, 145–158.

    Article  CAS  Google Scholar 

  • Calvert, J. G., & Stockwell, W. R. (1983). Acid generation in the troposphere by gas-phase chemistry. Environmental Science and Technology, 17, 428A–443A.

    CAS  Google Scholar 

  • Carraway, E. R., Hoffman, A. J., & Hoffmann, M. R. (1994). Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environmental Science and Technology, 28, 786–793.

    Article  CAS  Google Scholar 

  • Chai, X.-S., Hou, Q. X., Lou, Q., & Zhu, J. Y. (2004). Rapid determination of hydrogen peroxide in wood pulp bleaching streams by a dual-wavelength spectroscopic method. Analytica Chimica Acta, 507, 281–284.

    Article  CAS  Google Scholar 

  • Copper, C., & Koubek, E. (1999). Kinetics of the molybdate and tungstate catalyzed oxidation of iodide by hydrogen peroxide. Inorganica Chimica Acta, 288, 229–232.

    Article  CAS  Google Scholar 

  • Corbett, J. T. (1989). The scopolitin assay for hydrogen peroxide a review and a better method. Journal of Biochemical and Biophysical Methods, 18, 297–308.

    Article  CAS  Google Scholar 

  • Gupta, B. L. (1973). Microdetermination techniques for H2O2 in irradiated solutions. Microchemical Journal, 18, 363–374.

    Article  CAS  Google Scholar 

  • Hartkamp, H., & Bachhausen, P. (1987). A method for the determination of hydrogen peroxide in air. Atmospheric Environment, 21, 2207–2213.

    Article  CAS  Google Scholar 

  • Hatchard, C. G., & Parker, C. A. (1956). A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 235(1203), 518–536.

    Article  CAS  Google Scholar 

  • Hawk, J. P., McDaniel, E. L., Parish, T. D., & Simmons, K. E. (1972). Kinetic method for quantitative determination of individual peroxides in peroxide mixtures. Analytical Chemistry, 44(7), 1315–1317.

    Article  CAS  Google Scholar 

  • Hoffman, M. R., Martin, S. T., Choi, W., & Bhanemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Review, 95, 69–96.

    Article  Google Scholar 

  • Hurowitz, J. A., Tosca, N. J., McLennan, S. M., & Schoonen, M. A. A. (2007). Production of hydrogen peroxide in Martian and lunar soils. Earth and Planetary Science Letters, 225, 41–52.

    Article  Google Scholar 

  • Jen, J.-F., Leu, M.-F., & Yang, T. C. (1998). Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography. Journal of Chromatography. A, 796, 283–288.

    Article  CAS  Google Scholar 

  • Kelly, T. J., Daum, P. H., & Schwartz, S. E. (1985). Measurements of peroxides in cloud water and rain. Journal of Geophysical Research, 90, 7861–7871.

    Article  CAS  Google Scholar 

  • Kieber, R. J., & Helz, G. R. (1986). Two-method verification of hydrogen peroxide determinations in natural waters. Analytical Chemistry, 58, 2312–2315.

    Article  CAS  Google Scholar 

  • Klassen, N., Marchington, D., & McGowan, H. C. E. (1994). H2O2 determination by the I 3 method and by KMnO4 titration. Analytical Chemistry, 66, 2921–2925.

    Article  CAS  Google Scholar 

  • Klein, H. P., Horowitz, N. H., Levin, G. V., Oyama, V. I., Lederberg, J., Rich, A., Hubbard, J. S., Hobby, G. L., Straat, P. A., Berdahl, B. J., Carle, G. C., Brown, F. S., & Johnson, R. D. (1976). The viking biological investigation: preliminary results. Science, 194, 99–105.

    Article  CAS  Google Scholar 

  • Kleindienst, T. E., Shepson, P. B., Hodges, D. N., Nero, C. M., Arnts, R. R., Dasgupta, P. K., Hwang, H., Kok, G. L., Lind, J. A., Lazarus, A. L., Mackay, G. I., Mayne, L. K., & Schiff, H. I. (1988). Comparison of techniques for measurement of ambient levels of hydrogen peroxide. Environmental Science and Technology, 22, 53–61.

    Article  CAS  Google Scholar 

  • Korman, C., Bahnemann, D. W., & Hoffman, M. R. (1988). Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand. Environmental Science and Technology, 22, 798–806.

    Article  Google Scholar 

  • Lee, J. H., Tang, I. N., Weinstein-Lloyd, B., & Halper, E. B. (1994). Improved nonenzymatic method for the determination of gas-phase peroxides. Environmental Science and Technology, 28, 1180–1185.

    Article  CAS  Google Scholar 

  • Li, W., Zhou, Q., & Hua, T. (2010). Removal of organic matter from landfill leachate by advanced oxidation processes: a review. International Journal of Chemical Engineering, Article ID 270532, 10 pages doi:10.1155/2010/270532.

  • Liu, J., Steinberg, S. M., & Johnson, B. J. (2003). A high performance liquid chromatography method for determination of gas-phase hydrogen peroxide in ambient air using Fenton’s chemistry. Chemosphere, 52, 815–823.

    Article  CAS  Google Scholar 

  • Madsen, B., & Kromis, M. S. (1984). Flow injection and photometric determination of hydrogen peroxide in rain-water with N-ethyl-N-(sulfopropyl)aniline sodium salt. Analytical Chemistry, 56, 2849–2850.

    Article  CAS  Google Scholar 

  • Mrowetz, M., & Selli, E. (2006). Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 180, 15–22.

    Article  CAS  Google Scholar 

  • Patrick, W., & Wagner, H. (1949). Determination of hydrogen peroxide in small concentrations. Analytical Chemistry, 21(10), 1279–1280.

    Article  CAS  Google Scholar 

  • Yen, A. S., Kim, S. S., Hecht, M. H., Fant, M. S., & Murry, B. (2000). Evidence that the reactivity of Martian soil is due to superoxide ions. Science, 289, 1909–1912.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of NASA EPSCoR (grant#NNX07AT65) is gratefully acknowledged. I thank Dr. Henry Sun of the Desert Research Institute for the gift of the Mojave Mars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer M. Steinberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, S.M. High-performance liquid chromatography method for determination of hydrogen peroxide in aqueous solution and application to simulated Martian soil and related materials. Environ Monit Assess 185, 3749–3757 (2013). https://doi.org/10.1007/s10661-012-2825-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2825-4

Keywords

Navigation