Skip to main content

Advertisement

Log in

Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alef, K., & Nannipieri, P. (1995). Urease activity. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 316–320). San Diego: Academic.

    Google Scholar 

  • Andrews, S. S., Karlen, D. L., & Mitchell, J. P. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture Ecosystems & Environment, 90(1), 25–45. doi:10.1016/s0167-8809(01)00174-8.

    Article  Google Scholar 

  • Blanco-Canqui, H., & Lal, R. (2008). Principles of soil conservation. New York: Springer.

    Google Scholar 

  • Bonanomi, G., D'Ascoli, R., Antignani, V., Capodilupo, M., Cozzolino, L., Marzaioli, R., et al. (2011). Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. Applied Soil Ecology, 47(3), 184–194. doi:10.1016/j.apsoil.2010.12.007.

    Article  Google Scholar 

  • Brejda, J. J., Moorman, T. B., Karlen, D. L., & Dao, T. H. (2000). Identification of regional soil quality factors and indicators I. Central and Southern High Plains. Soil Science Society of America Journal, 64(6), 2115–2124. doi:10.2136/sssaj2000.6462115x.

    Article  CAS  Google Scholar 

  • Cassel, D. K., & Nielsen, D. R. (1986). Field capacity and available water capacity. In A. Klute (Ed.), Methods of soil analysis part 1, soil physical properties (pp. 901–924). Madison, WI: Agron. Monogr. 9 ASA and SSSA.

    Google Scholar 

  • Chaer, G. M., Myrold, D. D., & Bottomley, P. J. (2009). A soil quality index based on the equilibrium between soil organic matter and biochemical properties of undisturbed coniferous forest soils of the Pacific Northwest. Soil Biology and Biochemistry, 41(4), 822–830. doi:10.1016/j.soilbio.2009.02.005.

    Article  CAS  Google Scholar 

  • Forster, J. C. (1995). Soil physical analysis. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 105–106). San Diego: Academic.

    Google Scholar 

  • Garcia, C., Hernandez, T., & Costa, F. (1997). Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in Soil Science and Plant Analysis, 28(1), 123–134.

    Article  CAS  Google Scholar 

  • Govaerts, B., Sayre, K. D., & Deckers, J. (2006). A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil and Tillage Research, 87(2), 163–174. doi:10.1016/j.still.2005.03.005.

    Article  Google Scholar 

  • Hajabbasi, M. A., Jalalian, A., & Karimzadeh, H. R. (1997). Deforestation effects on soil physical and chemical properties, Lordegan, Iran. Plant and Soil, 190(2), 301–308. doi:10.1023/a:1004243702208.

    Article  CAS  Google Scholar 

  • Härdle, W., & Simar, L. (2007). Applied multivariate statistical analysis (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Imaz, M. J., Virto, I., Bescansa, P., Enrique, A., Fernandez-Ugalde, O., & Karlen, D. L. (2010). Soil quality indicator response to tillage and residue management on semi-arid Mediterranean cropland. Soil and Tillage Research, 107(1), 17–25. doi:10.1016/j.still.2010.02.003.

    Article  Google Scholar 

  • Izquierdo, I., Caravaca, F., Alguacil, M. M., Hernández, G., & Roldán, A. (2005). Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Applied Soil Ecology, 30(1), 3–10. doi:10.1016/j.apsoil.2005.02.004.

    Article  Google Scholar 

  • Karlen, D. L., Andrews, S. S., & Doran, J. W. (2001). Soil quality: current concepts and applications. In: Advances in Agronomy vol 74. Academic Press: New York. pp. 1–40

  • Khormali, F., Ajami, M., Ayoubi, S., Srinivasarao, C., & Wani, S. P. (2009). Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran. Agriculture Ecosystems & Environment, 134(3–4), 178–189. doi:10.1016/j.agee.2009.06.017.

    Article  Google Scholar 

  • Kroetsch, D., & Wang, C. (2008). Particle size distribution. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 713–725). Boca Raton: CRC.

    Google Scholar 

  • Marinari, S., Mancinelli, R., Campiglia, E., & Grego, S. (2006). Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecological Indicators, 6(4), 701–711. doi:10.1016/j.ecolind.2005.08.029.

    Article  Google Scholar 

  • Miralles, I., Ortega, R., Sánchez-Marañón, M., Leirós, M., Trasar-Cepeda, C., & Gil-Sotres, F. (2007). Biochemical properties of range and forest soils in Mediterranean mountain environments. Biology and Fertility of Soils, 43(6), 721–729. doi:10.1007/s00374-006-0155-9.

    Article  Google Scholar 

  • Nael, M., Khademi, H., & Hajabbasi, M. A. (2004). Response of soil quality indicators and their spatial variability to land degradation in central Iran. Applied Soil Ecology, 27(3), 221–232. doi:10.1016/j.apsoil.2004.05.005.

    Article  Google Scholar 

  • Nelson, R. E. (1982). Carbonate and gypsum. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis: chemical and microbiological properties (2nd ed., pp. 181–197). Wisconsin: American Society of Agronomy Inc.

    Google Scholar 

  • Nosrati, K., Feiznia, S., Van Den Eeckhaut, M., & Duiker, S. (2011a). Assessment of soil erodibility in Taleghan Drainage Basin, Iran, using multivariate statistics. Physical Geography, 32(1), 78–96. doi:10.2747/0272-3646.32.1.78.

    Article  Google Scholar 

  • Nosrati, K., Govers, G., Ahmadi, H., Sharifi, F., Amoozegar, M. A., Merckx, R., et al. (2011b). An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints? International Journal of Sediment Research, 26(2), 136–151.

    Article  Google Scholar 

  • Nourbakhsh, F. (2007). Decoupling of soil biological properties by deforestation. Agriculture Ecosystems & Environment, 121(4), 435–438.

    Article  Google Scholar 

  • Parr, J. F., Papendick, R. I., Hornick, S. B., & Meyer, R. E. (1992). Soil quality: attributes and relationship to alternative and sustainable agriculture. American Journal of Alternative Agriculture, 7(1–2), 5–11.

    Article  Google Scholar 

  • Rutherford, P. M., McGill, W. B., Arocena, J. M., & Figueiredo, C. T. (2008). Total nitrogen. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 225–237). Boca Raton: CRC.

    Google Scholar 

  • Sadeghi, S. H. R. (2005). A semi-detailed technique for soil erosion mapping based on BLM and satellite image applications. Journal of Agricultural Science and Technology, 7, 133–142.

    Google Scholar 

  • Shukla, M. K., Lal, R., & Ebinger, M. (2006). Determining soil quality indicators by factor analysis. Soil and Tillage Research, 87(2), 194–204. doi:10.1016/j.still.2005.03.011.

    Article  Google Scholar 

  • Skjemstad, J. O., & Baldock, J. A. (2008). Total and organic carbon. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 225–237). Boca Raton: CRC.

    Google Scholar 

  • SPSS. (2004). SPSS base user’s guide. Chicago: SPSS Inc.

    Google Scholar 

  • StatSoft (2008). STATISTICA: [data analysis software system], Version 8.0 for Windows update. StatSoft, Inc. (8.0 for Windows update ed.).

  • Stavi, I., & Lal, R. (2011). Variability of soil physical quality in uneroded, eroded, and depositional cropland sites. Geomorphology, 125(1), 85–91. doi:10.1016/j.geomorph.2010.09.006.

    Article  Google Scholar 

  • Tabatabai, M. A. (1994). Soil enzymes. In R. W. Weaver, J. S. Angle, & P. J. Bottomley (Eds.), Methods of Soil Analysis. Part 2, Microbiological and Biochemical Properties (pp. 775–833). Madison: SSSA.

  • Trasar-Cepeda, C., Leirós, M. C., & Gil-Sotres, F. (2008). Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biology and Biochemistry, 40(9), 2146–2155. doi:10.1016/j.soilbio.2008.03.015.

    Article  CAS  Google Scholar 

  • U.S. Department of the Interior Bureau of Land Management (1973). Determination of erosion condition class, Form 7310-12. Washington, DC.

  • Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., García-Orenes, F., Mataix-Beneyto, J., et al. (2007). Evaluation of soil quality using multiple lineal regression based on physical, chemical and biochemical properties. Science of the Total Environment, 378(1–2), 233–237.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by a grant from the research council of Shahid Beheshti University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Nosrati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosrati, K. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques. Environ Monit Assess 185, 2895–2907 (2013). https://doi.org/10.1007/s10661-012-2758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2758-y

Keywords

Navigation