Skip to main content
Log in

The Effects of Small Dam Removal on the Distribution of Sedimentary Contaminants

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

With increasing concern over degradation of aquatic resources, issues of liability, and maintenance costs, removal of small dams has become increasing popular. Although the benefits of removal seem to outweigh the drawbacks, there is a relative paucity of studies documenting the extent and magnitude of biological and chemical changes associated with dam removal, especially those evaluating potential changes in contaminant inventories. In August and November of 2000, a run-of-the-river dam on Manatawny Creek (southeast Pennsylvania) was removed in a two-stage process. To assess the effects of dam removal on the contaminant redistribution within the creek, sedimentary concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace metals (Cd, Cr, Cu, Ni, Pb, Zn) were evaluated prior to and several months after removal. Pre- and post-removal analyses revealed elevated and spatially variable concentrations of total PAHs (ranging from approximately 200 to 81,000 ng(g dry weight) and low to moderate concentrations of trace metals and PCBs. The concentrations of these sedimentary contaminants pre- versus post-removal were not significantly different. Additionally, though the impoundment received storm water run-off and associated contaminants from the adjacent city of Pottstown, the total inventory of fine-grain sediments in the impoundment prior to removal was very low. The removal of the low-level Manatawny Creek dam did not significantly redistribute contaminants downstream. However, each dam removal should be assessed on a case by case basis where the potential of sedimentary contaminant redistribution upon dam removal exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, R. W. and Sloan, R. J.: 1988, ‘PCB Patterns in Hudson River Fish,’ in: Smith, C. L. (ed.), Fisheries Research in the Hudson River, Hudson River Environmental Society, State University of New York Press, New York.

    Google Scholar 

  • Ashley, J. T. F. and Baker, J. E.: 1999, ‘Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor: Inventories and sources,’ Environ. Tox. Chem. 18, 838–849.

    Article  CAS  Google Scholar 

  • Ashley, J. T. F., Moore, A., Stapleton, H. M., Velinsky, D. J. and Wilhelm, M. P.: 2003, ‘Sedimentary nonylphenol contaminants in an urbanized, industrialized segment of the Delaware River Estuary, USA,’ Bull. Environ. Toxicol. 70, 978–984.

    Article  CAS  Google Scholar 

  • Bushaw-Newton, K., Hart, D. D., Pizzuto, J. E., Thomson, J. R., Egan, J., Ashley, J. T., Johnson, T. E., Horwitz, R. J., Keeley, M., Lawrence, J., Charles, D., Gatenby, C., Kreeger, D. A., Nightengale, T., Thomas, R. L. and Velinsky, D. J.: 2002, ‘An integrated approach towards understanding small dam removal: The Manatawny Creek Project,’ J. Am. Water Res. Assoc. 38, 1581–1600.

    Article  Google Scholar 

  • Bushaw-Newton, K., Velinsky, D. J. and Ashley, J. T.: 2005, ‘Assessing the ecological effects of a proposed dam removal,’ HydroRev. XXIV, 36–44.

    Google Scholar 

  • Beyer, A., Mackay, D., Matthies, M., Wania, F. and Webster, E.: 2000, ‘Assessing long-range transport potential of persistent organic pollutants,’ Environ. Sci. Techno. 34, 699–703.

    Article  CAS  Google Scholar 

  • Chancellor, P.: 1953, A History of Pottstown, Pennsylvania Historical Society of Pottsdown, Pottstown, PA.

    Google Scholar 

  • Dell, C. I. and Booth, W. G.: 1977, ‘Anthropogenic particles in the sediments of Lake Erie', J. Great Lakes Res. 3, 204–210.

    Google Scholar 

  • DeLuca, M. J., Romanok, K. M., Riskin, M. L., Mattes, G. L., Thomas, A. M. and Gray, B. J.: 1999, ‘Water Resources Data – New Jersey, Water Year 1999,’ Technical Report, Vol. 3: Water Quality Data, U. S. Geological Survey Water-Data Report NJ-99.

  • Edwards, N. T.: 1983, ‘Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment – A review,’ J. Environ. Qual. 12, 427–441.

    Article  CAS  Google Scholar 

  • Egan, J.: 2001, ‘Geomorphic Effects of Dam Removal on the Manatawny Creek, Pottstown, PA.,’ MS Thesis, Department of Geology, University of Delaware, Newark, DE.

  • Evans, J. E., Mackey, S. D., Gottgens, J. F. and Gill, W. M.: 2000, ‘Lessons from a dam failure,’ Ohio J. Sci. 100, 121–131.

    Google Scholar 

  • Folk, R. L.: 1980, Petrology of Sedimentary Rocks, Hemplhill Publisher Co., Austin, TX.

    Google Scholar 

  • Grant, G.: 2001, ‘Dam removal: Panacea or pandora for rivers?,’ Hydro. Proc. 15, 1531–1532.

    Article  Google Scholar 

  • Gray, L. J. and Ward, J. V.: 1982, ‘Effects of sediment releases from a reservoir on stream macroinvertebrates,’ Hydrobiology 96, 177–184.

    Article  Google Scholar 

  • Hart, D. D., Johnson, T. E., Bushaw-Newton, K. L., Horwitz, R. J., Bednarek, A. T., Charles, D. F., Kreeger, D. A. and Velinsky, D. J.: 2002, ‘Dam Removal: Challenges and opportunities for ecological research and river restoration,’ BioScience 52, 669–681.

    Article  Google Scholar 

  • Hetling, L. J., Horn, E. and Tofflemire, T. J.: 1978, ‘Summary of Hudson River PCB study results,’ Technical Paper, NYDEC-52, New York State Department of Environmental Conservation, Albany, New York.

  • Hoffman, E. J., Mills, G. L., Latimer, J. S. and Quinn, J. G.: 1984, ‘Urban runoff as a source of polycyclic aromatic hydrocarbons to coastal waters,’ Environ. Sci. Technol. 18, 580–586.

    Article  CAS  Google Scholar 

  • Karickhoff, S. W., Brown, D. S. and Scott, T. A.: 1979, ‘Sorption of hydrophobic pollutants on natural sediments,’ Water Res. 13, 241–248.

    Article  CAS  Google Scholar 

  • Ko, F. C. and Baker, J. E.: 2004, ‘Seasonal and annual loads of hydrophobic organic contaminants from the Susquehanna River basin to the Chesapeake Bay,’ Marine Poll. Bull. 48(9–10), 840–851.

    Google Scholar 

  • Landrum, P. F., Eadie, B. J. and Faust, W. R.: 1992, ‘Variation in the bioavailability of polycyclic aromatic hydrocarbons to the amphipod Diporeia (spp.) with sediment aging,’ Environ. Sci. Technol. 23, 588–595.

    Article  Google Scholar 

  • Latimer, J. S., Leblanc, L. A., Ellis, J. T., Zheng, J. and Quinn, J. G.: 1990, ‘The sources of PCBs the Narragansett Bay estuary,’ Sci. Total Environ. 97/98, 155–167.

    Article  Google Scholar 

  • Leister, D. L. and Baker, J. E.: 1994, ‘Atmospheric deposition of organic contaminants to the Chesapeake Bay,’ Atmospheric Environ. 28(8), 1499–1520.

    Article  CAS  Google Scholar 

  • Long, E. R., MacDonald, D. D., Smith, S. L. and Calder, F. D.: 1995, ‘Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments,’ Environ. Manage. 19, 81–97.

    Article  Google Scholar 

  • McGroddy, S. E. and Farrington, J. W.: 1995, ‘Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston Harbor, Massachusetts,’ Environ. Sci. Technol. 29, 1542–1550.

    Article  CAS  Google Scholar 

  • Menzie, C. A., Potocki, B. B. and Santodonato, J.: 1992, ‘Exposure to carcinogenic PAHs in the environment,’ Environ. Sci. Technol. 26, 1278–1284.

    Article  CAS  Google Scholar 

  • Moriarty, F.: 1984, ‘Persistent contaminants, compartmental models and concentration along food-chains,’ Ecological Bull. 36, 35–45.

    CAS  Google Scholar 

  • Nakanishi, K.: 1996, ‘Hydrophobic Organic Contaminants in Sediments of the Chesapeake Bay,’ MS Thesis, University of Maryland, College Park, MD.

  • Neff, J. M.: 1979, Polycyclic Aromatic Hydrocarbons in the Marine Environment, Applied Science Publishers, Essex, England.

    Google Scholar 

  • Paine, M. D., Chapman, P. M., Allard, P. J., Murdoch, M. H. and Minifie, D.: 1996, ‘Limited bioavailability of sediment PAH near an aluminum smelter: Contamination does not equal effects,’ Environ. Toxicol. Chem. 15, 2003–2018.

    Article  CAS  Google Scholar 

  • Pizzuto, J.: 2002, ‘Effects of dam removal on river form and process,’ BioScience 52, 683–691.

    Article  Google Scholar 

  • Poff, N. L. and Hart, D. D.: 2002, ‘How dams vary and why it matters for the emerging science of dam removal,’ BioScience 52, 659–668.

    Article  Google Scholar 

  • Quinn, G. P. and Keough, M. J.: 2003, Experimental Design and Data Analysis for Biologists, Cambridge University Press, England.

    Google Scholar 

  • Rathburn, S. L., and Wohl, E. E.: 2001, ‘One-dimensional sediment transport modeling of pool recovery along a mountain channel after a reservoir release,’ Regulated Rivers 17, 251–273.

    Article  Google Scholar 

  • Shuman, J. R.: 1995, ‘Environmental considerations for assessing dam removal alternative for river restoration,’ Regulated Rivers: Res. Manage. 11, 249–261.

    Article  Google Scholar 

  • Smith, S. L., MacDonald, D. D., Keenleyside, K. A., Ingerson, C. G. and Field, L. J.: 1996, ‘A preliminary evaluation of sediment quality assessment values for freshwater ecosystems,’ J. Great Lakes Res. 22, 624–638.

    Article  CAS  Google Scholar 

  • Stanley, E. H. and Doyle, M. W.: 2003, ‘Trading off: The ecological effects of dam removal,’ Frontier Ecol. Environ. 1, 15–22.

    Google Scholar 

  • Stout, S. A., Emsbo-Mattingly, S., Uhler, A. D. and McCarthy, K. J.: 2002, ‘Particulate coal in soils and sediments – recognition and potential influences on hydrocarbon fingerprinting and concentration,’ Cont. Soil Sed. Water June, 12–15.

  • Swackhamer, D. L.: 1987, ‘Quality Assurance Plan for Green Bay Mass Balance Study – PCBs and Dieldrin,’ U.S. Environmental Protection Agency, Great Lakes National Program Office.

  • Van Metre, P. C., Mahler, B. J. and Furlong, E. T.: 2000, ‘Urban sprawl leaves its PAH signature,’ Environ. Sci. Technol. 34, 4064–4070.

    Article  CAS  Google Scholar 

  • Voice, T. C. and Webber Jr., W.J.: 1983, ‘Sorption of hydrophobic compounds by sediment, soils, and suspended solids. I. Theory and background,’ Water Res. 17, 1433–1441.

    Article  CAS  Google Scholar 

  • Wade, T. L., Velinsky, D. J., Reinharz, E. and Schlekat, C. E.: 1994, ‘Tidal river sediments in the Washington, D. C. area. II. Distribution and sources of chlorinated and non-chlorinated aromatic hydrocarbons,’ Estuaries 17, 321–333.

    Article  CAS  Google Scholar 

  • Wakeham, S. G., Schaffner, C. and Giger, W.: 1980, ‘Polycyclic aromatic hydrocarbons in recent lake sediments -1. Compounds having anthropogenic origins,’ Geochimica et Cosmochimica Acta 44, 403–413.

    Article  CAS  Google Scholar 

  • Zar, J. H.: 1999, Biostatistical Analysis, Fourth Edition, Prentice Hall, New Jersey, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey T. F. Ashley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashley, J.T.F., Bushaw-Newton, K., Wilhelm, M. et al. The Effects of Small Dam Removal on the Distribution of Sedimentary Contaminants. Environ Monit Assess 114, 287–312 (2006). https://doi.org/10.1007/s10661-006-4781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-4781-3

Keywords

Navigation