Skip to main content
Log in

Uniqueness Theorems in the Quasi-static Theory of Thermoelasticity for Solids with Double Porosity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper the linear quasi-static theory of thermoelasticity for solids with double porosity is considered. The system of equations of this theory is based on the equilibrium equations for solids with double porosity, conservation of fluid mass, constitutive equations, Darcy’s law for materials with double porosity and Fourier’s law for heat conduction. A wide class of the internal and external boundary value problems (BVPs) are formulated. The Green’s formulas in the considered theory are obtained. The formulas of integral representations of regular vector and regular (classical) solutions are established, and finally, the uniqueness theorems for classical solutions of the above mentioned BVPs are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, M., Elsworth, D., Roegiers, J.C.: Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour. Res. 29, 1621–1633 (1993)

    Article  ADS  Google Scholar 

  2. Bai, M., Roegiers, J.C.: Fluid flow and heat flow in deformable fractured porous media. Int. J. Eng. Sci. 32, 1615–1633 (1994)

    Article  MATH  Google Scholar 

  3. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concept in the theory of seepage of homogeneous liquids in fissured rocks (strata). J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  MATH  Google Scholar 

  4. Beskos, D.E., Aifantis, E.C.: On the theory of consolidation with double porosity—II. Int. J. Eng. Sci. 24, 1697–1716 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  ADS  MATH  Google Scholar 

  6. de Boer, R.: Theory of Porous Media: Highlights in the Historical Development and Current State. Springer, Berlin, Heidelberg, New York (2000)

    Book  Google Scholar 

  7. Burchuladze, T.V., Gegelia, T.G.: The Development of the Potential Methods in the Elasticity Theory. Metsniereba, Tbilisi (1985)

    Google Scholar 

  8. Burchuladze, T., Svanadze, M.: Potential method in the linear theory of binary mixtures for thermoelastic solids. J. Therm. Stresses 23, 601–626 (2000)

    Article  MathSciNet  Google Scholar 

  9. Chiriţă, S., Scalia, A.: On the spatial and temporal behaviour in linear thermoelasticity of materials with voids. J. Therm. Stresses 24, 433–455 (2001)

    Article  Google Scholar 

  10. Ciarletta, M., Passarella, F., Svanadze, M.: Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity. J. Elast. 114, 55–68 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ciarletta, M., Scalia, A.: On uniqueness and reciprocity in linear thermoelasticity of materials with voids. J. Elast. 32, 1–17 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ciarletta, M., Scalia, A., Svanadze, M.: Fundamental solution in the theory of micropolar thermoelasticity for materials with voids. J. Therm. Stresses 30, 213–229 (2007)

    Article  MathSciNet  Google Scholar 

  13. Ciarletta, M., Straughan, B.: Thermo-poroacoustic acceleration waves in elastic materials with voids. J. Math. Anal. Appl. 333, 142–150 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ciarletta, M., Svanadze, M., Buonanno, L.: Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids. Eur. J. Mech. A, Solids 28, 897–903 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)

    Article  Google Scholar 

  16. Cowin, S.C., Gailani, G., Benalla, M.: Hierarchical poroelasticity: movement of interstitial fluid between levels in bones. Philos. Trans. R. Soc. A 367, 3401–3444 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Fosdick, R., Piccioni, M.D., Puglisi, G.: A note on uniqueness in linear elastostatics. J. Elast. 88, 79–86 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gegelia, T., Jentsch, L.: Potential methods in continuum mechanics. Georgian Math. J. 1, 599–640 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gelet, R., Loret, B., Khalili, N.: A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity. J. Geophys. Res., Solid Earth 117, B07205 (2012). doi:10.1029/2012JB009161

    Article  ADS  Google Scholar 

  20. Gelet, R., Loret, B., Khalili, N.: Borehole stability analysis in a thermoporoelastic dual-porosity medium. Int. J. Rock Mech. Min. Sci. 50, 65–76 (2012)

    Article  Google Scholar 

  21. Gentile, M., Straughan, B.: Acceleration waves in nonlinear double porosity elasticity. Int. J. Eng. Sci. 73, 10–16 (2013)

    Article  Google Scholar 

  22. Ieşan, D.: Thermoelastic Models of Continua. Kluwer Academic, Dordrecht (2004)

    MATH  Google Scholar 

  23. Ieşan, D.: On a theory of thermoviscoelastic materials with voids. J. Elast. 104, 369–384 (2011)

    Article  MATH  Google Scholar 

  24. Khaled, M.Y., Beskos, D.E., Aifantis, E.C.: On the theory of consolidation with double porosity III. Int. J. Numer. Anal. Methods Geomech. 8, 101–123 (1984)

    Article  MATH  Google Scholar 

  25. Khalili, N.: Coupling effects in double porosity media with deformable matrix. Geophys. Res. Lett. 30, 2153 (2003)

    Article  ADS  Google Scholar 

  26. Khalili, N., Habte, M.A., Zargarbashi, S.: A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hysteresis. Comput. Geotech. 35, 872–889 (2008)

    Article  Google Scholar 

  27. Khalili, N., Selvadurai, A.P.S.: A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophys. Res. Lett. 30, 2268 (2003)

    Article  ADS  Google Scholar 

  28. Khalili, N., Valliappan, S.: Unified theory of flow and deformation in double porous media. Eur. J. Mech. A, Solids 15, 321–336 (1996)

    MATH  Google Scholar 

  29. Knops, R.J., Payne, L.E.: Uniqueness Theorems in Linear Elasticity. Springer, Berlin, Heidelberg, New York (1971)

    Book  MATH  Google Scholar 

  30. Kumar, R., Kansal, T.: Fundamental solution in the theory of micropolar thermoelastic diffusion with voids. Comput. Appl. Math. 31, 169–189 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kupradze, V.D.: Potential methods in the theory of elasticity. Israel Program Sci. Transl., Jerusalem (1965)

  32. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  33. Masters, I., Pao, W.K.S., Lewis, R.W.: Coupling temperature to a double-porosity model of deformable porous media. Int. J. Numer. Methods Eng. 49, 421–438 (2000)

    Article  MATH  Google Scholar 

  34. Moutsopoulos, K.N., Konstantinidis, A.A., Meladiotis, I., Tzimopoulos, Ch.D., Aifantis, E.C.: Hydraulic behavior and contaminant transport in multiple porosity media. Transp. Porous Media 42, 265–292 (2001)

    Article  Google Scholar 

  35. Passarella, F., Tibullo, V., Zampoli, V.: On the uniqueness in dynamical thermoelasticity backward in time for porous media. J. Therm. Stresses 36, 501–515 (2013)

    Article  Google Scholar 

  36. Quintanilla, R.: Uniqueness in thermoelasticity of porous media with microtemperatures. Arch. Mech. 61, 371–382 (2009)

    MATH  MathSciNet  Google Scholar 

  37. Rohan, E., Naili, S., Cimrman, R., Lemaire, T.: Multiscale modeling of a fluid saturated medium with double porosity: Relevance to the compact bone. J. Mech. Phys. Solids 60, 857–881 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  38. Scalia, A., Pompei, A., Chiriţă, S.: On the behavior of steady time-harmonic oscillations in thermoelastic materials with voids. J. Therm. Stresses 27, 209–226 (2004)

    Article  Google Scholar 

  39. Scalia, A., Svanadze, M.: Uniqueness theorems in the equilibrium theory of thermoelasticity with microtemperatures for microstretch solid. J. Mech. Mater. Struct. 6, 1295–1311 (2011)

    Article  Google Scholar 

  40. Scalia, A., Svanadze, M., Tracinà, R.: Basic theorems in the equilibrium theory of thermoelasticity with microtemperatures. J. Therm. Stresses 33, 721–753 (2010)

    Article  Google Scholar 

  41. Scarpetta, E.: On the fundamental solutions in micropolar elasticity with voids. Acta Mech. 82, 151–158 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  42. Scarpetta, E., Svanadze, M., Zampoli, V.: Fundamental solutions in the theory of thermoelasticity for solids with double porosity. J. Therm. Stresses 37, 727–748 (2014)

    Article  Google Scholar 

  43. Straughan, B.: Stability and Wave Motion in Porous Media. Springer, New York (2008)

    MATH  Google Scholar 

  44. Straughan, B.: Stability and uniqueness in double porosity elasticity. Int. J. Eng. Sci. 65, 1–8 (2013)

    Article  MathSciNet  Google Scholar 

  45. Svanadze, M.: On existence of eigenfrequencies in the theory of two-component elastic mixtures. Q. J. Mech. Appl. Math. 51, 427–437 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  46. Svanadze, M.: Fundamental solution in the theory of consolidation with double porosity. J. Mech. Behav. Mater. 16, 123–130 (2005)

    Article  Google Scholar 

  47. Svanadze, M.: Plane waves and eigenfrequencies in the linear theory of binary mixtures of thermoelastic solids. J. Elast. 92, 195–207 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. Svanadze, M.: Dynamical problems of the theory of elasticity for solids with double porosity. Proc. Appl. Math. Mech. 10, 309–310 (2010)

    Article  Google Scholar 

  49. Svanadze, M.: Plane waves and boundary value problems in the theory of elasticity for solids with double porosity. Acta Appl. Math. 122, 461–471 (2012)

    MATH  MathSciNet  Google Scholar 

  50. Svanadze, M.: The boundary value problems of the full coupled theory of poroelasticity for materials with double porosity. Proc. Appl. Math. Mech. 12, 279–282 (2012)

    Article  Google Scholar 

  51. Svanadze, M.: Fundamental solution in the linear theory of consolidation for elastic solids with double porosity. J. Math. Sci. 195, 258–268 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  52. Svanadze, M.: Uniqueness theorems in the theory of thermoelasticity for solids with double porosity. Mecanicca 49, 2099–2108 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  53. Svanadze, M.: On the theory of viscoelasticity for materials with double porosity. Discrete Contin. Dyn. Syst., Ser. B 19, 2335–2352 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  54. Svanadze, M.M.: Potential method in the linear theory of viscoelastic materials with voids. J. Elast. 114, 101–126 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  55. Svanadze, M., De Cicco, S.: Fundamental solutions in the full coupled linear theory of elasticity for solid with double porosity. Arch. Mech. 65, 367–390 (2013)

    Google Scholar 

  56. Svanadze, M., Scalia, A.: Mathematical problems in the theory of bone poroelasticity. Int. J. Math. Meth. Models Biosci. 1, 1211225 (2012)

    MathSciNet  Google Scholar 

  57. Svanadze, M., Scalia, A.: Mathematical problems in the coupled linear theory of bone poroelasticity. Comput. Math. Appl. 66, 1554–1566 (2013)

    Article  MathSciNet  Google Scholar 

  58. Tibullo, V., Zampoli, V.: A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech. Res. Commun. 38, 77–79 (2011)

    Article  MATH  Google Scholar 

  59. Wilson, R.K., Aifantis, E.C.: On the theory of consolidation with double porosity—I. Int. J. Eng. Sci. 20, 1009–1035 (1982)

    Article  MATH  Google Scholar 

  60. Zhao, Y., Chen, M.: Fully coupled dual-porosity model for anisotropic formations. Int. J. Rock Mech. Min. Sci. 43, 1128–1133 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for fruitful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Svanadze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarpetta, E., Svanadze, M. Uniqueness Theorems in the Quasi-static Theory of Thermoelasticity for Solids with Double Porosity. J Elast 120, 67–86 (2015). https://doi.org/10.1007/s10659-014-9505-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-014-9505-2

Keywords

Mathematics Subject Classification (2010)

Navigation