Skip to main content
Log in

A Theory of Chiral Cosserat Elastic Plates

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The mechanical behaviour of chiral materials is of interest for the investigation of carbon nanotubes, honeycomb structures, auxetic materials and bones. This paper is concerned with a theory of chiral Cosserat elastic plates. In this theory, in contrast with the case of achiral plates, the stretching and flexure cannot be treated independently of each other. First, we derive the basic equations which characterize the deformation of chiral plates. Then we establish a uniqueness result in the dynamical theory. In the equilibrium theory we establish conditions under which the Neumann problem admits solutions. Finally, the deformation of an infinite plate with a circular hole is studied. It is shown that, in contrast with the theory of Cosserat achiral plates a uniform pressure acting on the boundary of the hole produces a microrotation of the material particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prall, D., Lakes, R.S.: Properties of a chiral honeycomb with a Poisson’s ratio −1. Int. J. Mech. Sci. 39, 305–314 (1997)

    Article  MATH  Google Scholar 

  2. Haijung, Z., Zhong-can, O.: Bending and twisting elasticity: a revised Marco-Sigga model of DNA chirality. Phys. Rev. E 58, 4816–4821 (1998)

    Article  ADS  Google Scholar 

  3. Ro, R.: Elastic activity of the chiral medium. J. Appl. Phys. 85, 2508–2513 (1999)

    Article  ADS  Google Scholar 

  4. Lakes, R.: Elastic and viscoelastic behaviour of chiral materials. Int. J. Mech. Sci. 43, 1579–1589 (2001)

    Article  MATH  Google Scholar 

  5. Healey, T.J.: Material symmetry and chirality in nonlinearly elastic rods. Math. Mech. Solids 7, 405–420 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dyszlewicz, J.: Micropolar Theory of Elasticity. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  7. Natroshvili, D., Giorgashvili, L., Stratis, I.G.: Representation formulae of general solutions in the theory of hemitropic elasticity. Q. J. Mech. Appl. Math. 59, 451–474 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jouma, H., Ostoja-Starzewski, M.: Stress and couple-stress invariance in non-centrosymmetric micropolar planar elasticity. Proc. R. Soc. A 467, 2896–2911 (2011)

    Article  ADS  Google Scholar 

  9. Papanicolopulos, S.A.: Chirality in isotropic linear gradient elasticity. Int. J. Solids Struct. 48, 745–752 (2011)

    Article  MATH  Google Scholar 

  10. Chandraseker, K., Mukherjee, S.: Coupling of extension and twist in single-walled carbon nanotubes. J. Appl. Mech. 73, 315–326 (2006)

    Article  ADS  MATH  Google Scholar 

  11. Chandraseker, K., Mukherjee, S., Paci, J.T., Schatz, G.C.: An atomistic-continuum Cosserat rod model of carbon nanotubes. J. Mech. Phys. Solids 57, 932–958 (2009)

    Article  ADS  Google Scholar 

  12. Lakes, R.S., Yoon, H.S., Katz, J.L.: Slow compressional wave propagation in wet human and bovine cortical bone. Science 200, 513–515 (1983)

    Article  ADS  Google Scholar 

  13. Park, H.C., Lakes, R.S.: Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J. Biomech. 19, 1038–1040 (1986)

    Article  Google Scholar 

  14. Lakes, R.S.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)

    Article  ADS  Google Scholar 

  15. Lakes, R.S.: Elastic freedom in cellular solids and composite materials. In: Golden, K., Grimmert, G. (eds.) Mathematics of Multiscale Materials, IMA, vol. 99, pp. 129–153. Springer, New York (1998)

    Chapter  Google Scholar 

  16. Donescu, S., Chiroiu, V., Munteanu, L.: On the Young’s modulus of an auxetic composite structure. Mech. Res. Commun. 36, 294–301 (2009)

    Article  MATH  Google Scholar 

  17. Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1. Springer, Berlin (1960)

    Google Scholar 

  18. Nowacki, W.: Theory of Asymmetric Elasticity. PWN, Warszawa (1981)

    MATH  Google Scholar 

  19. Eringen, A.C.: Microcontinuum Field Theories, I: Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  20. Jasiuk, I., Ostoja-Starzewski, M.: From lattices and composites to micropolar continua. Analysis of materials with complex microstructure. In: Harik, V.M., Luo, L.S. (eds.) Micromechanics and Nanoscale Effects, MEMS, Multi-Scale Materials and Micro-Flows. Kluwer Academic, Dordrecht (2004)

    Google Scholar 

  21. Eringen, A.C.: Theory of micropolar plates. Z. Angew. Math. Phys. 18, 12–30 (1967)

    Article  Google Scholar 

  22. Green, A.E., Naghdi, P.M., Wenner, M.L.: Linear theory of Cosserat surfaces and elastic plates of variable thickness. Math. Proc. Camb. Philos. Soc. 69, 227–254 (1971)

    Article  ADS  MATH  Google Scholar 

  23. Manolachi, A.: On the bending of elastic plates in asymmetric elasticity. An. ştiinţ. Univ. “Al. I. Cuza” Iaşi, Mat. 19, 209–226 (1973)

    Google Scholar 

  24. Erbay, H.A.: An asymptotic theory of thin micropolar plates. Int. J. Eng. Sci. 38, 1497–1516 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Aganovic, I., Tambaca, J., Tutek, Z.: Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity. J. Elast. 84, 131–152 (2007)

    Article  MathSciNet  Google Scholar 

  26. Neff, P., Hong, K., Jeong, J.: The Reissner-Mindlin plate is the Γ-limit of Cosserat elasticity. Proc. Appl. Math. Mech. PAMM 9, 541–542 (2009)

    Article  Google Scholar 

  27. Naghdi, P.M.: The theory of shells and plates. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VI a/2, pp. 425–640. Springer, Berlin (1972)

    Google Scholar 

  28. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)

    Article  MATH  Google Scholar 

  29. Narender, S., Gopalakrishnan, G.: Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech. 223, 395–413 (2012)

    Article  MathSciNet  Google Scholar 

  30. Hadjigeorgiou, E.P., Stavroulakis, G.E.: The use of auxetic materials in smart structures. Comput. Methods Sci. Technol. 10, 147–160 (2004)

    Google Scholar 

  31. Adam, C., Pearcy, M., Mc Combe, P.: Stress analysis of interbody fusion-finite element modeling of inter-vertebral implant and vertebral body. Clin. Biomech. 18, 265–275 (2003)

    Article  Google Scholar 

  32. Brun, L.: Methodes energetiques dans les systemes evolutifs lineaires. J. Mech. 8, 125–192 (1969)

    MathSciNet  MATH  Google Scholar 

  33. Ieşan, D.: Thermoelastic Models of Continua. Kluwer Academic, Dordrecht (2004)

    MATH  Google Scholar 

  34. Fichera, G.: Existence theorems in elasticity. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VI a/2, pp. 347–388. Springer, Berlin (1972)

    Google Scholar 

  35. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  36. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. De Cicco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Cicco, S., Ieşan, D. A Theory of Chiral Cosserat Elastic Plates. J Elast 111, 245–263 (2013). https://doi.org/10.1007/s10659-012-9400-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9400-7

Keywords

Mathematics Subject Classification (2010)

Navigation