Skip to main content
Log in

Reaction of Solanum (section Lycopersicon) germplasm to Phytophthora capsici

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The use of resistant cultivars is one of the most efficient strategies for reducing the amount of pesticides in agricultural crops. Several species of the Solanaceae and Cucurbitaceae families are susceptible to diseases caused by Phytophthora capsici isolates. Even though sources of resistance have been identified in other host plants, reports of resistance to P. capsici in cultivated and wild tomato species [genus Solanum (section Lycopersicon)] germplasm are yet scarce. The main objective of the present work was to characterize the reaction of 244 Solanum (Lycopersicon) accessions to P. capsici under controlled greenhouse experiments. In the first set of experiments, tomato seedlings were inoculated at the collar area with a 3 mL of a spore suspension (2 × 104 zoospores mL−1). Disease incidence (dead plants/total plants) was assessed 14 days after inoculation. The accessions were separated in five well-defined reaction groups: highly resistant (HR), resistant (R), moderately susceptible (MR), susceptible (S), and highly susceptible (HS). The reaction of a group of the ten accessions with the highest levels of resistance was then evaluated against a collection of five P. capsici isolates. Differential reaction was observed among accessions and isolates. The resistant response was host species-dependent with susceptibility being more often found in S. peruvianum accessions, whereas sources of resistance were identified more frequently among accessions of the cultivated tomato (S. lycopersicum).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ando, K., Hammar, S., & Grume, T. R. (2009). Age-related resistance of diverse cucurbit fruit to infection by Phytophthora capsici. Journal of the American Society for Horticultural Science, 134(2), 176–182.

    Google Scholar 

  • Andrés, J. L., Rivera, A., & Fernández, J. (2006). Virulence of Spanish Phytophthora nicotianae isolates towards Capsicum annuum germplasm and pathogenicity towards Lycopersicum esculentum. Spanish Journal of Agricultural Research, 4(3), 248–254.

    Article  Google Scholar 

  • Andres-Ares, J. L., Rivera-Martinez, A., & Fernandez-Paz, J. (2005). Resistance of pepper germplasm to Phytophthora capsici isolates collected in Northwest Spain. Spanish Journal of Agricultural Research, 3(4), 429–436.

    Article  Google Scholar 

  • Boukema, I. W. (1983). Inheritance of resistance to foot and root rot caused by Phytophthora nicotianae Breda de Haan Var. nicotianae in tomato (Lycopersicon esculentum mill.). Euphytica, 32(1), 103–109.

    Article  Google Scholar 

  • Brune, S., & Lopes, J. F. (1994). Resistência de Cucurbita maxima a Phytophthora capsici. Pesquisa Agropecuária Brasileira, 29(2), 341–344.

    Google Scholar 

  • Brune, S., Reifschneider, F. J. B., & Lopes, J. F. (1990). Avaliação da resistência de plântulas de moranga a Phytophthora capsici. Horticultura Brasileira, 8(2), 95.

    Google Scholar 

  • Café-Filho, A. C., & Duniway, J. M. (1995). Dispersal of Phytophthora capsici and P. parasitica in furrow irrigated rows of bell pepper, tomato and squash. Plant Pathology, 44(6), 1025–1032.

    Article  Google Scholar 

  • Chavez, D. J., Kebelka, E. A., & Chaparro, J. X. (2011). Screening of Cucurbita moschata Duchesne germplasm for crown rot resistance to Floridian isolates of Phytophthora capsici Leonian. Hortscience, 46(4), 536–540.

    Google Scholar 

  • Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul: APS Press.

    Google Scholar 

  • Giordano, L. B., Aragão, F. A. S., & Boiteux, L. S. (2003). Melhoramento genético do tomateiro. Informe Agropecuário, 23(219), 43–57.

    Google Scholar 

  • Glosier, B. R., Ogundiwin, E. A., Sidhu, G. S., Sischo, D. R., & Prince, J. P. (2008). A differential series of pepper (Capsicum annuum) lines delineates fourteen physiological races of Phytophthora capsici. Euphytica, 162(1), 23–30.

    Article  Google Scholar 

  • Granke, L. L., Quesada-Ocampo, L., Lamour, K. H., & Hausbeck, M. K. (2012a). Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Disease, 96(11), 1588–1600.

    Article  Google Scholar 

  • Granke, L. L., Quesada-Ocampo, L., Lamour, K. H., & Hausbeck, M. K. (2012b). Differences in virulence of phytophthora cpsici isolates from a worldwide collection on host fruits. European Journal of Plant Pathology, 132(2), 281–296.

    Article  CAS  Google Scholar 

  • Hausbeck, M. K., & Lamour, K. H. (2004). Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Disease, 88(12), 1292–1130.

    Article  Google Scholar 

  • Henz, G. P., & Lima, M. F. (1998). Resistência de plântulas de cultivares de cucurbitáceas à podridão-das-raízes causada por Phytophthora capsici. Fitopatologia Brasileira, 33(6), 853–859.

    Google Scholar 

  • Hwang, J. S., & Hwang, B. K. (1993). Quantitative evaluation of resistance of Korean tomato cultivars to isolates of Phytophthora capsici from different geographic areas. Plant Disease, 77(12), 1256–1259.

    Article  Google Scholar 

  • Jenkins, J. A. (1948). The origin of the cultivated tomato. Economic Botany, 2(4), 379–392.

  • Kim, Y. J., Hwang, B. K., & Park, K. W. (1989). Expression of age related resistance in pepper plants infected with Phytophthora capsici. Plant Disease, 73, 745–747.

    Article  Google Scholar 

  • Kimble, K. A., & Grogan, R. G. (1960). Resistance to Phytophthora root rot in pepper. Plant Disease Report, 44(872–873), 1960.

    Google Scholar 

  • Kreutzer, W. A., Bodine, E. W., & Durrell, L. W. (1940). Cucurbit diseases and rot of tomato fruit caused by Phytophthora capsici. Phytopathology, 30(11), 972–976.

    Google Scholar 

  • Lee, B. K., Kim, B. S., Chang, S. W., & Hwang, B. K. (2001). Aggressiveness to pumpkin cultivars of isolates of Phytopththora capsici from pumpkin and pepper. Plant Disease, 85(5), 497–500.

    Article  Google Scholar 

  • Lima, M. F., & Henz, G. P. (1994). Patogenicidade de isolados de Phytophthora capsici à abóbora e avaliação da resistência de genótipos de Cucurbita spp. Horticultura Brasileira, 12(1), 45–48.

    Google Scholar 

  • McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.

    Article  CAS  PubMed  Google Scholar 

  • Oelke, L. M., Steiner, R., & Bosland, P. W. (2003). Differentiation of race specific resistance to phytophthora root rot and foliar blight in Capsicum annuum. Journal of the American Society for Horticultural Science, 128(2), 213–218.

    Google Scholar 

  • Padley Jr., L. D., Kabelka, E. A., Roberts, P. D., & French, R. (2008). Evaluation of Cucurbita pepo accessions for crown rot resistance to isolates of Phytophthora capsici. Hortscience, 43(7), 1996–1999.

    Google Scholar 

  • Pontes, N. C., Aguiar, F. M., Boiteux, L. S., Paz-Lima, M. L., Oliveira, V. R., & Café-Filho, A. C. (2014). Identification of sources of seedling resistance to Phytophthora capsici in Cucumis melo. Tropical Plant Pathology, 39(1), 74–81.

    Article  Google Scholar 

  • Quesada-Ocampo, L. M., & Hausbeck, M. K. (2010). Resistance in tomato and wild relatives to crown and root rot caused by Phytophthora capsici. Phytopathology, 100(6), 619–627.

    Article  CAS  PubMed  Google Scholar 

  • Quesada-Ocampo, L. M., Granke, L. L., Mercier, M. R., Olsen, J., & Hausbeck, M. K. (2011). Investigating the genetic structure of Phytophthora capsici populations. Phytopathology, 101(9), 1061–1073.

    Article  CAS  PubMed  Google Scholar 

  • Quesada-Ocampo, L. M., Vargas, A. M., Naegele, R., Francis, D., & Hausbeck, M. (2016). Resistance to crown and root rot caused by Phytophthora capsici in a tomato advanced backcross of Solanum habrochaites and Solanum lycopersicum. Plant Disease, 100(4), 829–835.

  • R Core Team (2014). R: a language and environment for statistical computing. Vienna, Austra: R Foundation for Statistical Computing, URL http://www.R-project.org/.

    Google Scholar 

  • Reifschneider, F. J. B., Café-Filho, A. C., & Rêgo, A. M. (1986). Factors affecting the expression of pepper resistance to Phytophthora blight in screening trials. Plant Pathology, 35(4), 451–456.

    Article  Google Scholar 

  • Reifschneider, F. J. B., Boiteux, L. S., Della Vecchia, P. T., Poulos, J. M., & Kuroda, N. (1992). Inheritance of adult plant resistance to Phytophthora capsici in pepper. Euphytica, 62(1), 45–49.

    Article  Google Scholar 

  • Ribeiro, C. S., & Bosland, P. W. (2012). Physiological race characterization of Phytopththora capsici isolates from several host plant species in Brazil using New Mexico recombinant inbred lines of Capsicum annuum at two inoculum levels. Journal of the American Society for Horticultural Science, 137(6), 421–426.

    Google Scholar 

  • Rick, C. M., & Yoder, J. I. (1988). Classical and molecular genetics of tomato: highlights and perspectives. Annual Review of Genetics, 22, 281–300.

    Article  CAS  PubMed  Google Scholar 

  • Ristaino, J. B. (1990). Intraspecific variation among isolates of Phytopthora capsici from pepper and cucurbit fields in North Carolina. Phytopathology, 80(11), 1253–1259.

    Article  Google Scholar 

  • Ristaino, J. B., & Johnston, S. A. (1999). Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Disease, 83(12), 1080–1089.

    Article  Google Scholar 

  • Roberts, P.D., McGovern, R.J., Hert, A., Vavrina, C.S., & Urs, R.R. (1999). Phytophthora capsici on tomato: Survival, severity, age, variety, and insensitivity to mefenoxam. In C.S. Vavrina (Ed.). Florida Tomato Institute Proceedings (pp. 41–43). University of Florida and Citrus & Vegetable Magazine PRO 516.

  • Satour, M. M., & Butler, E. E. (1967). A root and crown rot of tomato caused by Phytophthora capsici and P. parasitica. Phytopathology, 57(4), 510–515.

    Google Scholar 

  • Sy, O., Steiner, R., & Bosland, P. W. (2008). Recombinant inbred line differential identifies race-specific resistance to phytophthora root rot in Capsicum annuum. Phytopathology, 98(8), 867–870.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. F., Thoquet, P., Olivier, J., & Grimsley, N. (1998). Genetic analysis of quantitative resistance loci (QRL) of tomato variety Hawaii 7996 in Taiwan. In C. Allen & J. Elphinstone (Eds.), Prior, P (pp. 246–249). Springer, Verlag: Bacterial Wilt Disease. Molecular and Ecological Aspects. Berlin.

    Google Scholar 

Download references

Acknowledgements

A.C. Café-Filho is recipient of the Brazilian National Research Council Research (CNPq) Fellowship Grants no. 305.729/2013-0. Milton L. Paz Lima received a scholarship from CAPES/MEC while at the University of Brasília. The authors thank to Waldon M. Rezende for his skillful assistance in the experiments. We also thank Dr. Antonio W. Moita and Dr. Frederick M. Aguiar for their support in the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailton Reis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petry, R., Paz-Lima, M.L., Boiteux, L.S. et al. Reaction of Solanum (section Lycopersicon) germplasm to Phytophthora capsici . Eur J Plant Pathol 148, 481–489 (2017). https://doi.org/10.1007/s10658-016-1106-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1106-4

Keywords

Navigation