Skip to main content
Log in

Genetic diversity of tumorigenic bacteria associated with crown gall disease of raspberry in Serbia

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

During the last 3 years, crown gall disease was observed in some young raspberry plantations throughout Serbia, causing considerable economic losses. Based on biochemical and physiological tests, PCR targeting the 23S rRNA gene, and 16S rRNA and recA gene sequence analysis, at least two different species were identified as causal agents of disease. Out of 14 strains isolated from raspberry tumors, 12 were identified as tumorigenic Rhizobium rhizogenes, one belonged to Agrobacterium tumefaciens genomic species G8, while the remaining strain formed a separate phylogenetic lineage within A. tumefaciens species complex, different from all known genomic species. All strains investigated harbored nopaline-type of Ti plasmid and showed identical pathogenic properties by inoculating several test plants. However, they were divided into two genetic groups based on PCR-RFLP analysis of Ti plasmid virA-virB2 region. Furthermore, total of nine unique ERIC-PCR profiles were identified among the strains studied. Although strains of R. rhizogenes exhibited similar ERIC-PCR profiles, they were differentiated into six distinct genetic groups. Based on the fact that some genetic groups were composed of strains originating from different geographic areas, it can be assumed that they have a common origin and were probably disseminated by movement of infected plant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alippi, A., López, A., & Balatti, P. (2012). Diversity among agrobacteria isolated from diseased plants of blueberry (Vaccinium corymbosum) in Argentina. European Journal of Plant Pathology, 134(2), 415–430. doi:10.1007/s10658-012-0001-x.

    Article  CAS  Google Scholar 

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arsenijević, M. (1989). Agrobacterium tumefaciens parazit pitome kupine (Rubus sp.). Paper presented at the Kongres mikrobiologov Jugoslavije (VI), Maribor, 11–15.09.

  • Bini, F., Kuczmog, A., Putnoky, P., Otten, L., Bazzi, C., Burr, T. J., et al. (2008). Novel pathogen-specific primers for the detection of Agrobacterium vitis and Agrobacterium tumefaciens. Vitis, 47, 181–189.

    CAS  Google Scholar 

  • Bouzar, H., & Moore, L. W. (1987). Isolation of different Agrobacterium biovars from a natural oak savanna and tallgrass prairie. Applied and Environmental Microbiology, 53(4), 717–721.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burr, T. J., Reid, C. L., Katz, B. H., Tagliati, M. E., Bazzi, C., & Breth, D. I. (1993). Failure of Agrobacterium radiobacter strain K-84 to control crown gall on raspberry. HortScience, 28(10), 1017–1019.

    Google Scholar 

  • Conn, H. J. (1942). Validity of the Genus Alcaligenes. Journal of Bacteriology, 44(3), 353–360.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costechareyre, D., Rhouma, A., Lavire, C., Portier, P., Chapulliot, D., Bertolla, F., et al. (2010). Rapid and efficient identification of Agrobacterium species by recA allele analysis: Agrobacterium recA diversity. Microbial Ecology, 60(4), 862–872. doi:10.1007/s00248-010-9685-7.

    Article  CAS  PubMed  Google Scholar 

  • Cubero, J., Lastra, B., Salcedo, C. I., Piquer, J., & Lopez, M. M. (2006). Systemic movement of Agrobacterium tumefaciens in several plant species. Journal of Applied Microbiology, 101(2), 412–421. doi:10.1111/j.1365-2672.2006.02938.x.

    Article  CAS  PubMed  Google Scholar 

  • De Ley, J. (1974). Phylogeny of procaryotes. Taxon, 23, 291–300.

    Article  Google Scholar 

  • De Ley, J., Tijtgat, R., De Smedt, J., & Michiels, M. (1973). Thermal stability of DNA: DNA hybrids within the genus Agrobacterium. Journal of General Microbiology, 78(2), 241–252. doi:10.1099/00221287-78-2-241.

    Article  Google Scholar 

  • du Plessis, H. J., van Vuuren, H. J. J., & Hattingh, M. J. (1984). Biotypes and phenotypic groups of strains of Agrobacterium in South Africa. Phytopathology, 74, 524–529.

    Article  Google Scholar 

  • Farrand, S. K., van Berkum, P. B., & Oger, P. (2003). Agrobacterium is a definable genus of the family Rhizobiaceae. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1681–1687. doi:10.1099/ijs. 0.02445-0.

    Article  CAS  PubMed  Google Scholar 

  • Haas, J. H., Moore, L. W., Ream, W., & Manulis, S. (1995). Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Applied and Environmental Microbiology, 61(8), 2879–2884.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hildebrand, E. M. (1940). Cane gall of brambles caused by Phytomonas rubi n. sp. Journal of Agricultural Research, 61, 685–696.

    Google Scholar 

  • Hobolth, L. A. (1973). Agrobacterium radiobacter var. tumefaciens biotype 2 found on Rubus insularis in Denmark. Botanisk-Tiddskrif, 68, 160–164.

    Google Scholar 

  • Holmes, B., & Roberts, P. (1981). The classification, identification and nomenclature of agrobacteria. Journal of Applied Bacteriology, 50(3), 443–467. doi:10.1111/j.1365-2672.1981.tb04248.x.

    Article  Google Scholar 

  • Jones, J. B., & Raju, B. C. (1988). Systemic Movement of Agrobacterium tumefaciens in symptomless stem tissue of Chrysanthemum morifolium. Plant Disease, 72, 51–54.

    Article  Google Scholar 

  • Kerr, A., Manigault, P., & Tempe, J. (1977). Transfer of virulence in vivo and in vitro in Agrobacterium. Nature, 265(5594), 560–561.

    Article  CAS  PubMed  Google Scholar 

  • King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 44(2), 301–307.

    CAS  PubMed  Google Scholar 

  • Kuzmanović, N., Ivanović, M., Prokić, A., Gašić, K., Blagojević, N., Puławska, J., et al. (2013). Identification and characterization of Agrobacterium spp. isolated from apricot in Serbia. European Journal of Plant Pathology, 137(1), 11–16. doi:10.1007/s10658-013-0229-0.

    Article  Google Scholar 

  • Kuzmanović, N., Ivanović, M., Prokić, A., Gašić, K., Zlatković, N., & Obradović, A. (2014). Characterization and phylogenetic diversity of Agrobacterium vitis from Serbia based on sequence analysis of 16S-23S rRNA internal transcribed spacer (ITS) region. European Journal of Plant Pathology, 140, 757–768. doi:10.1007/s10658-014-0507-5.

    Article  Google Scholar 

  • Lamovšek, J., Geric Stare, B., & Urek, G. (2014). Isolation of non-pathogenic Agrobacterium spp. biovar 1 from agricultural soils in Slovenia. 2014, 53, 130–139.

  • Lassalle, F., Campillo, T., Vial, L., Baude, J., Costechareyre, D., Chapulliot, D., et al. (2011). Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biology and Evolution, 3, 762–781. doi:10.1093/gbe/evr070.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindström, K., & Young, J. P. W. (2011). International committee on systematics of prokaryotes subcommittee on the taxonomy of Agrobacterium and Rhizobium: minutes of the meeting, 7 September 2010, Geneva, Switzerland. International Journal of Systematic and Evolutionary Microbiology, 61(12), 3089–3093. doi:10.1099/ijs. 0.036913-0.

    Article  PubMed  Google Scholar 

  • Michel, M. F., Brasileiro, A. C., Depierreux, C., Otten, L., Delmotte, F., & Jouanin, L. (1990). Identification of different Agrobacterium strains isolated from the same forest nursery. Applied and Environmental Microbiology, 56(11), 3537–3545.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Milijašević, S., Gavrilović, V., Živković, S., Trkulja, N., & Pulawska, J. (2007). First report of tumorigenic Agrobacterium radiobacter on raspberry in Serbia. Pesticides and Phytomedicine, 22, 113–119.

    Google Scholar 

  • Moore, L. W., Bouzar, H., & Burr, T. J. (2001). Agrobacterium. In N. W. Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (3rd ed., pp. 17–35). St Paul: APS Press.

    Google Scholar 

  • Mougel, C., Cournoyer, B., & Nesme, X. (2001). Novel tellurite-amended media and specific chromosomal and Ti plasmid probes for direct analysis of soil populations of Agrobacterium biovars 1 and 2. Applied and Environmental Microbiology, 67(1), 65–74. doi:10.1128/aem. 67.1.65-74.2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mougel, C., Thioulouse, J., Perriere, G., & Nesme, X. (2002). A mathematical method for determining genome divergence and species delineation using AFLP. International Journal of Systematic and Evolutionary Microbiology, 52(Pt 2), 573–586.

    CAS  PubMed  Google Scholar 

  • Nesme, X., Michel, M. F., & Digat, B. (1987). Population heterogeneity of Agrobacterium tumefaciens in galls of Populus L. from a single nursery. Applied and Environmental Microbiology, 53(4), 655–659.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nesme, X., Ponsonnet, C., Picard, C., & Normand, P. (1992). Chromosomal and pTi genotypes of agrobacterium strains isolated from Populus tumors in two nurseries. FEMS Microbiology Letters, 101(3), 189–196. doi:10.1016/0378-1097(92)90815-6.

    Article  CAS  Google Scholar 

  • Panday, D., Schumann, P., & Das, S. K. (2011). Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). International Journal of Systematic and Evolutionary Microbiology, 61(Pt 11), 2632–2639. doi:10.1099/ijs. 0.028407-0.

    Article  PubMed  Google Scholar 

  • Peluso, R., Raio, A., Morra, F., & Zoina, A. (2003). Physiological, biochemical and molecular analyses of an Italian collection of Agrobacterium tumefaciens strains. European Journal of Plant Pathology, 109(4), 291–300. doi:10.1023/A:1023556108085.

    Article  CAS  Google Scholar 

  • Picard, C., Ponsonnet, C., Paget, E., Nesme, X., & Simonet, P. (1992). Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Applied and Environmental Microbiology, 58(9), 2717–2722.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ponsonnet, C., & Nesme, X. (1994). Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Archives of Microbiology, 161(4), 300–309. doi:10.1007/BF00303584.

    CAS  PubMed  Google Scholar 

  • Popoff, M. Y., Kersters, K., Kiredjian, M., Miras, I., & Coynault, C. (1984). Taxonomic position of Agrobacterium strains of hospital origin. Ann Microbiol (Paris), 135a(3), 427–442.

    CAS  Google Scholar 

  • Portier, P., Fischer-Le Saux, M., Mougel, C., Lerondelle, C., Chapulliot, D., Thioulouse, J., et al. (2006). Identification of Genomic Species in Agrobacterium Biovar 1 by AFLP Genomic Markers. Applied and Environmental Microbiology, 72(11), 7123–7131. doi:10.1128/aem. 00018-06.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puławska, J. (2010). Crown gall of stone fruits and nuts, economic significance and diversity of its causal agents: tumorigenic Agrobacterium spp. Journal of Plant Pathology, 92, S1.87–S81.98.

    Google Scholar 

  • Puławska, J., & Sobiczewski, P. (2005). Development of a semi-nested PCR based method for sensitive detection of tumorigenic Agrobacterium in soil. Journal of Applied Microbiology, 98(3), 710–721. doi:10.1111/j.1365-2672.2004.02503.x.

    Article  PubMed  Google Scholar 

  • Puławska, J., Willems, A., & Sobiczewski, P. (2006). Rapid and specific identification of four Agrobacterium species and biovars using multiplex PCR. Systematic and Applied Microbiology, 29(6), 470–479. doi:10.1016/j.syapm.2005.11.002.

    Article  PubMed  Google Scholar 

  • Puławska, J., Willems, A., De Meyer, S. E., & Sule, S. (2012a). Rhizobium nepotum sp. nov. isolated from tumors on different plant species. Systematic and Applied Microbiology, 35(4), 215–220. doi:10.1016/j.syapm.2012.03.001.

    Article  PubMed  Google Scholar 

  • Puławska, J., Willems, A., & Sobiczewski, P. (2012b). Rhizobium skierniewicense sp. nov., isolated from tumours on chrysanthemum and cherry plum. International Journal of Systematic and Evolutionary Microbiology, 62(Pt 4), 895–899. doi:10.1099/ijs. 0.032532-0.

    Article  PubMed  Google Scholar 

  • Rademaker, J., & De Bruijn, F. (1997). Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. DNA markers: protocols, applications and overviews, 151–171.

  • Rhouma, A., Boubaker, A., Nesme, X., & Dessaux, Y. (2006). Plasmid and chromosomal diversity of a Tunisian collection of Agrobacterium tumefaciens strains. Tunisian Journal of Plant Protection, 1, 73–84.

    Google Scholar 

  • Shams, M., Campillo, T., Lavire, C., Muller, D., Nesme, X., & Vial, L. (2012). Rapid and efficient methods to isolate, type strains and determine species of Agrobacterium spp. in pure culture and complex environments. In J. C. Jimenez-Lopez (Ed.), Biochemical Testing. http://www.intechopen.com/books/biochemical-testing: InTech.

  • Shams, M., Vial, L., Chapulliot, D., Nesme, X., & Lavire, C. (2013). Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of Agrobacterium spp. using recA-based PCR. Systematic and Applied Microbiology, 36(5), 351–358. doi:10.1016/j.syapm.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  • Silvestro, D., & Michalak, I. (2012). raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution, 12(4), 335–337. doi:10.1007/s13127-011-0056-0.

    Article  Google Scholar 

  • Süle, S. (1978). Biotypes of Agrobacterium tumefaciens in Hungary. Journal of Applied Bacteriology, 44(2), 207–213. doi:10.1111/j.1365-2672.1978.tb00792.x.

    Article  Google Scholar 

  • Suzaki, K., Yoshida, K., & Sawada, H. (2004). Detection of tumorigenic Agrobacterium strains from infected apple saplings by colony PCR with improved PCR primers. Journal of General Plant Pathology, 70(6), 342–347. doi:10.1007/s10327-004-0133-8.

    Article  CAS  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. doi:10.1093/molbev/mst197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan, B. S., Yabuki, J., Matsumoto, S., Kageyama, K., & Fukui, H. (2003). PCR primers for identification of opine types of Agrobacterium tumefaciens in Japan. Journal of General Plant Pathology, 69(4), 258–266. doi:10.1007/s10327-003-0044-0.

    Article  CAS  Google Scholar 

  • Tarbah, F. A., & Goodman, R. N. (1987). Systemic spread of Agrobacterium tumefaciens biovar 3 in the vascular system of grapes. Phytopathology, 77, 915–920.

    Article  Google Scholar 

  • Tindall, B. J., Rossello-Mora, R., Busse, H. J., Ludwig, W., & Kampfer, P. (2010). Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, 60(Pt 1), 249–266. doi:10.1099/ijs. 0.016949-0.

    Article  CAS  PubMed  Google Scholar 

  • Van Larebeke, N., Engler, G., Holsters, M., Van den Elsacker, S., Zaenen, I., Schilperoort, R. A., et al. (1974). Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature, 252(5479), 169–170.

    Article  PubMed  Google Scholar 

  • Versalovic, J., Koeuth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 19(24), 6823–6831.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weller, S. A., Stead, D. E., & Mazzucchi, U. (2004). Crown and cane gall of a blackberry-raspberry hybrid caused by Agrobacterium rhizogenes in Northern Italy. Journal of Plant Pathology, 86, 161–165.

    CAS  Google Scholar 

  • Yakabe, L. E., Parker, S. R., & Kluepfel, D. A. (2012). Role of systemic Agrobacterium tumefaciens populations in crown gall incidence on the walnut hybrid rootstock ‘Paradox’. Plant Disease, 96(10), 1415–1421. doi:10.1094/PDIS-05-11-0364-RE.

    Article  Google Scholar 

  • Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(1), 134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young, J. M., Kuykendall, L. D., Martinez-Romero, E., Kerr, A., & Sawada, H. (2001). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology, 51(Pt 1), 89–103.

    CAS  PubMed  Google Scholar 

  • Zoina, A., Raio, A., Peluso, R., & Spasiano, A. (2001). Characterization of agrobacteria from weeping fig (Ficus benjamina). Plant Pathology, 50(5), 620–627. doi:10.1046/j.1365-3059.2001.00603.x.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the project III46008 financed by Ministry of Education, Science and Technological Development, Republic of Serbia, and EU Commission project AREA, No 316004. The authors gratefully acknowledge Enrico Biondi, Gerald V. Minsavage, Jeffrey B. Jones, Joanna Puławska, Sandor Süle and Subrata K. Das for kindly providing bacterial strains. We also thank Joanna Puławska for critical reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nemanja Kuzmanović.

Additional information

The DDBJ/EMBL/GenBank accession numbers for the partial 16S rRNA gene sequences of strains KFB 323, KFB 330 and KFB 337 are: KP172481-KP172483, respectively. Accession numbers for the partial recA gene sequences of strains KFB 323, KFB 330, KFB 337, MAL 1.1.2, MAL 1.1.4, 39/7T and NRCPB10T are: KP172484-KP172489 and KP284164, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmanović, N., Prokić, A., Ivanović, M. et al. Genetic diversity of tumorigenic bacteria associated with crown gall disease of raspberry in Serbia. Eur J Plant Pathol 142, 701–713 (2015). https://doi.org/10.1007/s10658-015-0645-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0645-4

Keywords

Navigation