Skip to main content
Log in

Genotypic diversity of Citrus tristeza virus within red grapefruit, in a field trial site in South Africa

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Grapefruit cultivars (Citrus paradisi Macfad.) are extremely sensitive to Citrus tristeza virus (CTV) infections and are pre-immunized with mild-strain cross-protecting sources not containing components that elicit symptoms such as stem-pitting and decline, to ensure longer periods of productivity. However, pre-immunizing sources often lose their efficiency and for this reason the previously commercially applied grapefruit cross-protecting source GFMS (grapefruit mild-strain) 12 has been replaced by GFMS 35. This study was undertaken to determine the diversity of CTV genotypes within trees that were inoculated with either GFMS 12 or GFMS 35. Samples were collected from a number of different trees of two red grapefruit cultivars (cv. Star Ruby and cv. Flame), planted 10 years prior to sampling in the Malelane production area of South Africa. Reverse transcription-polymerase chain reaction amplification of a 5’ variable region (A-region) and a 3’ conserved region (p23 gene) was followed by cloning, sequencing of multiple clones, and phylogenetic analyses. The genotypic identities of clones were determined based on their relatedness to reference CTV strains. Sequence types within the VT genotypic group dominated in all of the samples, with T30-like sequence types being a minor component in some populations of the field collected samples. The original pre-immunising populations of GFMS 12 and GFMS 35 were characterised on greenhouse maintained plants and compared with the populations exposed to field infections by aphids. While the methodology employed only allows a coarse representation of the genotype composition of the CTV population, this study provides insight into which genotypes of CTV must be incorporated within a mild-strain cross-protecting source within the South African Citrus Improvement Scheme (SACIS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta-Leal, R., Fawley, M. W., & Rush, C. M. (2008). Changes in the intra-isolate genetic structure of Beet necrotic yellow vein virus populations associated with plant resistance breakdown. Virology, 376, 60–68.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Joseph, M., Marcus, R., & Lee, R. F. (1989). The continuous challenge of Citrus tristeza virus control. Annual Review of Phytopathology, 27, 291–316.

    Article  Google Scholar 

  • Beerenwinkel, N., & Zagordi, O. (2011). Ultra-deep sequencing for the analysis of viral populations. Current Opinion in Virology, 1, 413–418.

    Article  CAS  PubMed  Google Scholar 

  • Biswas, K. K., Tarafdar, A., Diwedi, S., & Lee, R. F. (2012). Distribution, genetic diversity and recombination analysis of Citrus tristeza virus of India. Virus Genes, 45, 139–148.

    Article  CAS  PubMed  Google Scholar 

  • Broadbent, P., Brlansky, R. H., & Indsto, J. (1996). Biological Characterization of Australian isolates of Citrus tristeza virus and separation of subisolates by single aphid transmissions. Plant Disease, 80, 329–333.

    Article  Google Scholar 

  • Černi, S., Ruscic, J., Nolasco, G., Gatin, Z., Krajacic, M., & Skoric, D. (2008). Stem pitting and seedling yellows symptoms of Citrus tristeza virus infection may be determined by minor sequence variants. Virus Genes, 36, 241–249.

    Article  PubMed  Google Scholar 

  • Cline, J., Braman, J. C., & Hogrefe, H. H. (1996). PCR fidelity of Pfu polymerase and other thermostable DNA polymerases. Nucleic Acids Research, 24(18), 3546–3551.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.

    Article  CAS  PubMed  Google Scholar 

  • Dieffenbach, C. W., Lowe, T. M., & Dveksler, G. S. (1993). General concepts for PCR primer design. Genome Research, 3, S30–S37.

    Article  CAS  Google Scholar 

  • Folimonova, S. Y. (2013). Developing an understanding of cross-protection by Citrus tristeza virus. Frontiers in Microbiology, 4, 1–9.

    Article  Google Scholar 

  • Folimonova, S. Y., Robertson, C. J., Shilts, T., Folimonov, A. S., Hilf, M. E., Garnsey, S. M., & Dawson, W. O. (2010). Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. Journal of Virology, 84, 1314–1325.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gal-On, A., & Shiboleth, Y. M. (2005). Cross-protection. In G. Loebenstein & J. P. Carr (Eds.), Natural resistance mechanisms of plants to viruses (pp. 261–288). Dordrecht: Springer.

    Google Scholar 

  • Ge, L., Zhang, J., Zhou, X., & Li, H. (2007). Genetic structure and population variability of tomato yellow leaf curl China virus. Journal of Virology, 81, 5902–5907.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guindon, S., & Gascuel, O. (2003). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.

    Article  PubMed  Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Harper, S. J. (2013). Citrus tristeza virus: evolution of complex and varied genotypic groups. Frontiers in Microbiology, 4(93), 1–18.

    Google Scholar 

  • Harper, S. J., Dawson, T. E., & Pearson, M. N. (2010). Isolates of Citrus tristeza virus that overcome Poncirus trifoliata resistance comprise a novel strain. Archives of Virology, 155, 471–480.

    Article  CAS  PubMed  Google Scholar 

  • Hilf, M. E., Mavrodieva, V. A., & Garnsey, S. M. (2005). Genetic marker analysis of a global collection of isolates of Citrus tristeza virus: characterization and distribution of ctv genotypes and association with symptoms. Phytopathology, 95, 909–917.

    Article  CAS  PubMed  Google Scholar 

  • Iglesias, N. G., Gago-Zachert, S. P., Robledo, G., Costa, N., Plata, M. I., Vera, O., et al. (2008). Population structure of Citrus tristeza virus from field Argentinean isolates. Virus Genes, 36, 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, B., Hong, N., Wang, G., Hu, J., Zhang, J., Wang, C., et al. (2008). Characterization of Citrus tristeza virus strains from southern China based on analysis of restriction patterns and sequences of their coat protein genes. Virus Genes, 37, 185–192.

    Article  CAS  PubMed  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, T., Youn, M. Y., Min, B. E., Choi, S. H., Kim, M., & Ryu, K. H. (2005). Molecular analysis of quasispecies of Kyuri green mottle mosaic virus. Virus Research, 110, 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Lee, R. F., & Keremane, M. L. (2013). Mild strain cross-protection of tristeza: a review of research to protect against decline on sour orange in Florida. Frontiers in Microbiology, 4(259), 1–11.

    Google Scholar 

  • Luttig, M., van Vuuren, S. P., & van der Vyver, J. B. (2002). Differentiation of single aphid cultured sub-isolates of two South African Citrus tristeza virus isolates from grapefruit by single-strand conformation polymorphism. In: Proc 15th Conf. IOCV, 186–196. Riverside, California: IOCV.

    Google Scholar 

  • Moreno, P., Ambrόs, S., Albiach-Marti, M. R., Guerri, J., & Peña, L. (2008). Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9, 251–268.

    Article  CAS  PubMed  Google Scholar 

  • Niblett, C. L., Genc, H., Cevik, B., Halbert, S., Brown, L., Nolasco, G., et al. (2000). Progress on strain differentiation of Citrus tristeza virus and its application to the epidemiology of Citrus tristeza disease. Virus Research, 71, 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Oberholzer, P.C., Mathews, I., & Stiemie, S.F., (1949). The decline of grapefruit trees in South Africa. A preliminary report on so-called “Stem-Pitting”. Science. Bulletin Department of Agriculture South Africa, 287:17.

  • Roy, A., & Brlansky, R. H. (2009). Population dynamics of a Florida Citrus tristeza virus isolate and aphid-transmitted subisolates: identification of three genotypic groups and recombinants after aphid transmission. Phytopathology, 99, 1297–1306.

    Article  PubMed  Google Scholar 

  • Rubio, L., Ayllón, M. A., Guerri, J., Pappu, H., Niblett, C., & Moreno, P. (1996). Differentiation of Citrus tristeza closterovirus (CTV) isolates by single-strand conformation polymorphism analysis of the coat protein gene. Annals of Applied Biology, 129, 479–489.

    Article  CAS  Google Scholar 

  • Rubio, L., Ayllón, M. A., Kong, P., Fernandez, A., Polek, M., Guerri, J., Moreno, P., & Falk, B. W. (2001). Genetic variation of Citrus tristeza virus isolates from California and Spain: evidence for mixed infections and recombination. Journal of Virology, 75, 8054–8062.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambade, A., Lopez, C., Rubio, L., Flores, R., Guerri, J., & Moreno, P. (2003). Polymorphism of a specific region in gene p23 of Citrus tristeza virus allows for the discrimination between mild and severe isolates. Archives of Virology, 148, 2325–2340.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J. (2001). Molecular cloning: ‘A laboratory manual’. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Scott, K. A., Hlela, Q., Zablocki, O., Read, D., van Vuuren, S., & Pietersen, G. (2012). Genotype composition of populations of grapefruit-cross-protecting Citrus tristeza virus strain GFMS12 in different host plants and aphid-transmitted sub-isolates. Archives of Virology, 158, 27–37.

    Article  PubMed  Google Scholar 

  • Souza, A. A., Müller, G. W., Targon, M. L. P. N., Takita, M. A., & Machado, M. A. (2002). Stability of the mild protective ‘PIAC’ Isolate of Citrus tristeza virus. In: Proc. 15th Conf. IOCV, 131–135. Riverside, CA: IOCV.

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molelcular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  • Targon, M. L. P. N., Machado, M. A., Carvalho, S. A., Souza, A. A., & Müller, G. W. (2000). Differential replication of a mild and a severe Citrus tristeza virus isolate in species and varieties of citrus. In: Proc. 14th Conf. IOCV, 127–130. Riverside, CA: IOCV.

    Google Scholar 

  • van Vuuren, S. P., & Collins, R. P. (1993). Evaluation of Citrus tristeza virus isolates for cross protection of grapefruit in South Africa. Plant Disease, 77, 24–28.

    Article  Google Scholar 

  • van Vuuren, S. P., & Manicom, B. Q. (2005). The response of star ruby grapefruit to different Citrus tristeza virus isolates. In: Proc 16th Conf. IOCV, 112–116. Riverside, California: IOCV.

    Google Scholar 

  • van Vuuren, S. P., & Moll, J. N. (1987). Glasshouse evaluation of Citrus tristeza virus isolates. Phytophylactica, 19, 219–221.

    Google Scholar 

  • van Vuuren, S. P., & van der Vyver, J. B. (2000). Comparison of South African pre-immunizing Citrus tristeza virus isolates with foreign isolates in three grapefruit selections. In: Proc. 14th Conf. IOCV, 51–56. Riverside, California: IOCV.

    Google Scholar 

  • van Vuuren, S. P., van der Vyver, J. B., & Luttig, M. (2000). Diversity among sub-isolates of cross-protecting Citrus tristeza virus isolates in South Africa. In: Proc. 14th Conf. IOCV, 103–110. Riverside, California: IOCV.

    Google Scholar 

  • von Broembsen, L. A., & Lee, A. T. C. (1988). South Africa’s citrus improvement program. In: Proc. 10th Conf. IOCV, 407–416. Riverside, California: IOCV.

    Google Scholar 

  • Wang, J., Bozan, O., Kwon, S., Dang, T., Rucker, T., Yokomi, R. K., et al. (2013). Past and future of a century old Citrus tristeza virus collection: a California citrus germplasm tale. Frontiers in Microbiology, 4(366), 1–9.

    Google Scholar 

  • Yoon, J. Y., Ahn, H. I., Kim, M., Tsuda, S., & Ryu, K. I. (2006). Pepper mild mottle virus pathogenicity determinants and cross protection effect of attenuated mutants in pepper. Virus Research, 118, 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Zablocki, O., & Pietersen, G. (2014). Characterization of a novel Citrus tristeza virus genotypewithin three cross-protecting source GFMS12 sub-isolatesin South Africa by means of Illumina sequencing. Archives of Virology, 158(8), 2133–2139.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from Citrus Research International, Agricultural Research Council-Plant Protection Research Institute and the National Research Foundation-THRIP program. We also wish to thank Fanie van Vuuren for his guidance, patience and support during these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Read.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Read, D.A., Pietersen, G. Genotypic diversity of Citrus tristeza virus within red grapefruit, in a field trial site in South Africa. Eur J Plant Pathol 142, 531–545 (2015). https://doi.org/10.1007/s10658-015-0631-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0631-x

Keywords

Navigation