Skip to main content
Log in

Impacts of plant growth and architecture on pathogen processes and their consequences for epidemic behaviour

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

As any epidemic on plants is driven by the amount of susceptible tissue, and the distance between organs, any modification in the host population, whether quantitative or qualitative, can have an impact on the epidemic dynamics. In this paper we examine using examples described in the literature, the features of the host plant and the use of crop management which are likely to decrease diseases. We list the pathogen processes that can be affected by crop growth and architecture modifications and then determine how we can highlight the principal ones. In most cases, a reduction in plant growth combined with an increase in plant or crop porosity reduces infection efficiency and spore dispersal. Experimental approaches in semi-controlled conditions, with concomitant characterisation of the host, microclimate and disease, allow a better understanding and analysis of the processes impacted. Afterwards, the models able to measure and predict the effect of plant growth and architecture on epidemic behaviour are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, M. T., Prusinkiewicz, P., & DeJong, T. M. (2005). Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model. New Phytologist, 166(3), 869–880. doi:10.1111/j.1469-8137.2005.01348.x.

    Article  PubMed  CAS  Google Scholar 

  • Analytis, S. (1980). Obtaining of sub-models for modeling the entire life cycle of a pathogen. Journal of Plant Diseases and Protection, 87, 371–382.

    Google Scholar 

  • Ando, K., Hammar, S., & Grumet, R. (2009). Age-related resistance of diverse cucurbit fruit to infection by Phytophthora capsici. Journal of the American Society for Horticultural Science, 134(2), 176–182.

    Google Scholar 

  • Austin, C. N., & Wilcox, W. F. (2011). Effects of fruit-zone leaf removal, training systems, and irrigation on the development of grapevine powdery mildew. American Journal of Enology and Viticulture, 62(2), 193–198. doi:10.5344/ajev.2010.10084.

    Article  Google Scholar 

  • Aylor, D. E. (1990). The role of intermittent wind in the dispersal of fungal pathogens. Annual Review of Phytopathology, 28, 73–92.

    Article  Google Scholar 

  • Aylor, D. E., & Sanogo, S. (1997). Germinability of Venturia inaequalis conidia exposed to sunlight. Phytopathology, 87, 628–633.

    Article  PubMed  CAS  Google Scholar 

  • Baccar, R., Fournier, C., Dornbusch, T., Andrieu, B., Gouache, D., & Rober, C. (2011). Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic–virtual plant model. Annals of Botany, 108, 1179–1194.

    Article  PubMed  Google Scholar 

  • Bannon, F. J., & Cooke, B. M. (1998). Studies on dispersal of Septoria tritici pycnidiospores in wheat-clover intercrops. Plant Pathology, 47(1), 49–56. doi:10.1046/j.1365-3059.1998.00200.x.

    Article  Google Scholar 

  • Berryman, A. A. (2004). Limiting factors and population regulation. Oikos, 105(3), 667–670. doi:10.1111/j.0030-1299.2004.13381.x.

    Article  Google Scholar 

  • Burie, J. B., Langlais, M., & Calonnec, A. (2011). Switching from a mechanistic model to a continuous model to study at different scales the effect of vine growth on the dynamic of a powdery mildew epidemic. Annals of Botany, 107(5), 885–895.

    Article  PubMed  Google Scholar 

  • Burie, J. B., Calonnec, A., Langlais, M., & Mammeri, Y. (2012). Modeling the spread of a pathogen over a spatially heterogeneous growing crop. Paper presented at the 2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA), Shanghai, China, oct 2012.

  • Butzler, T., Bailey, J., & Beute, M. (1998). Integrated management of sclerotinia blight in peanut: utilizing canopy morphology, mechanical pruning, and fungicide timing. Plant Disease, 82, 1312–1318.

    Article  Google Scholar 

  • Calonnec, A., Cartolaro, P., Naulin, J. M., Bailey, D., & Langlais, M. (2008). A host-pathogen simulation model: powdery mildew of grapevine. Plant Pathology, 57, 493–508.

    Article  Google Scholar 

  • Calonnec, A., Cartolaro, P., & Chadoeuf, J. (2009). Highlighting features of spatiotemporal spread of powdery mildew epidemics in the vineyard using statistical modeling on field experimental data. Phytopathology, 99, 411–422.

    Article  PubMed  CAS  Google Scholar 

  • Carisse, O., & Bouchard, J. (2010). Age-related susceptibility of strawberry leaves and berries to infection by Podosphaera aphanis. Crop Protection, 29, 969–978.

    Article  Google Scholar 

  • Casadebaig, P., Quesnel, G., Langlais, M., & Faivre, R. (2012). A generic model to simulate air-borne diseases as a function of crop architecture. PLoS ONE, PONE-D-12-03636-R1.

  • Celette, F., Findeling, A., & Gary, C. (2009). Competition for nitrogen in an unfertilized intercropping system: the case of an association of grapevine and grass cover in a mediterranean climate. European Journal of Agronomy, 30(1), 41–51. doi:10.1016/j.eja.2008.07.003.

    Article  CAS  Google Scholar 

  • Chang, K. F., Ahmed, H. U., Hwang, S. F., Gossen, B. D., Howard, R. J., Warkentin, T. D., et al. (2007). Impact of cultivar, row spacing and seeldling rate on ascochyta blight severity and yield of chickpea. Canadian Journal of Plant Science, 87, 395–403.

    Article  Google Scholar 

  • Cieslak, M., Seleznyova, A. N., & Hanan, J. (2011). A functional-structural kiwifruit vine model integrating architecture, carbon dynamics and effects of the environment. Annals of Botany, 107(5), 747–764. doi:10.1093/aob/mcq180.

    Article  PubMed  CAS  Google Scholar 

  • Cintron-Arias, A., Castillo-Chavez, C., Bettencourt, L. M. A., Lloyd, A. L., & Banks, H. T. (2009). The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences and Engineering, 6(2), 261–282. doi:10.3934/mbe.2009.6.261.

    Article  PubMed  Google Scholar 

  • Cleland, E., Chuine, I., Menzel, A., & Mooney, H. (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 22(7), 357–365.

    Article  Google Scholar 

  • Costes, E., Smith, C., Renton, M., Guedon, Y., Prusinkiewicz, P., & Godin, C. (2008). MAppleT: simulation of apple tree development using mixed stochastic and biomechanical models. Functional Plant Biology, 35(9–10), 936–950. doi:10.1071/fp08081.

    Article  Google Scholar 

  • Dalla Marta, A., Magarey, R. D., & Orlandini, S. (2005). Modelling leaf wetness duration and downy mildew simulation on grapevine in Italy. Agricultural and Forest Meteorology, 132(1–2), 84–95. doi:10.1016/j.agrformet.2005.07.003.

    Article  Google Scholar 

  • de Vallavieille-Pope, C., Giosue, S., Munk, L., Newton, A. C., Niks, R. E., Stergard, H., et al. (2000). Assessment of epidemiological parameters and their use in epidemiological and forecasting models of cereal airborne diseases. Agronomie, 20(7), 715–727. doi:10.1051/agro:2000171.

    Article  Google Scholar 

  • de Vallavieille-Pope, C., Huber, L., Leconte, M., & Bethenod, O. (2002). Preinoculation effects of light quantity on infection efficiency of Puccinia striiformis and Puccinia triticina on wheat seedlings. Phytopathology, 92(12), 1308–1314. doi:10.1094/phyto.2002.92.12.1308.

    Article  PubMed  Google Scholar 

  • Dell, A. I., Pawar, S., & Savage, V. M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences of the United States of America, 108(26), 10591–10596. doi:10.1073/pnas.1015178108.

    Article  PubMed  CAS  Google Scholar 

  • Develey-Rivière, M.-P., & Galiana, E. (2007). Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytologist, 175, 405–416.

    Article  PubMed  Google Scholar 

  • Deytieux-Belleau, C., Geny, L., Roudet, J., Mayet, V., Doneche, B., & Fermaud, M. (2009). Grape berry skin features related to ontogenic resistance to Botrytis cinerea. European Journal of Plant Pathology, 125(4), 551–563. doi:10.1007/s10658-009-9503-6.

    Article  Google Scholar 

  • Fernandez-Aparicio, M., Amri, M., Kharrat, M., & Rubiales, D. (2010). Intercropping reduces Mycosphaerella pinodes severity and delays upward progress on the pea plant. Crop Protection, 29(7), 744–750. doi:10.1016/j.cropro.2010.02.013.

    Article  Google Scholar 

  • Ferrandino, F. J. (2008). Effect of crop growth and canopy filtration on the dynamics of plant disease epidemics spread by aerially dispersed spores. Phytopathology, 98(5), 492–503. doi:10.1094/phyto-98-5-0492.

    Article  PubMed  CAS  Google Scholar 

  • Ficke, A., Gadoury, D. M., Seem, R. C., & Dry, I. B. (2003). Effects of ontogenic resistance upon establishment and growth of Uncinula necator on grape berries. Phytopathology, 93(5), 556–563.

    Article  PubMed  Google Scholar 

  • Finckh, M. R., Gacek, E. S., Czembor, H. J., & Wolfe, M. S. (1999). Host frequency and density effects on powdery mildew and yield in mixtures of barley cultivars. Plant Pathology, 48(6), 807–816.

    Article  Google Scholar 

  • Fournier, C., & Andrieu, B. (1999). ADEL-maize: an L-system based model for the integration of growth processes from the organ to the canopy. Application to regulation of morphogenesis by light availability. Agronomie, 19(3–4), 313–327. doi:10.1051/agro:19990311.

    Article  Google Scholar 

  • Fournier, C., Andrieu, B., Ljutovac, S., & Saint-Jean, S. (2003). ADEL-wheat: A 3D architectural model of wheat development (Plant Growth Modeling and Applications, Proceedings).

  • Frezal, L., Robert, C., Bancal, M. O., & Lannou, C. (2009). Local dispersal of Puccinia triticina and wheat canopy structure. Phytopathology, 99(10), 1216–1224. doi:10.1094/phyto-99-10-1216.

    Article  PubMed  Google Scholar 

  • Gadoury, D., Seem, R., Ficke, A., & Wilcox, W. (2003). Ontogenic resistance to powdery mildew in grape berries. Phytopathology, 93(5), 547–555.

    Article  PubMed  Google Scholar 

  • Garrett, K. A., & Mundt, C. C. (1999). Epidemiology in mixed host populations. Phytopathology, 89(11), 984–990.

    Article  PubMed  CAS  Google Scholar 

  • Geagea, L., Huber, L., Sache, I., Flura, D., McCartney, H. A., & Fitt, B. D. L. (2000). Influence of simulated rain on dispersal of rust spores from infected wheat seedlings. Agricultural and Forest Meteorology, 101, 53–66.

    Article  Google Scholar 

  • Gee, C., Gadoury, D., & Cadle-Davidson, L. (2008). Ontogenic resistance to Uncinula necator varies by genotype and tissue type in a diverse collection of Vitis spp. Plant Disease, 92(7), 1067–1073.

    Article  Google Scholar 

  • Gigot, C., Saint-Jean, S., Huber, L., Leconte, M., Maumené, C., & De, V. P. (2012). Using wheat cultivar mixtures to reduce severity of septoria tritici blotch, a rain-borne disease. In Paper presented at the International Conference Epidemiology Canopy Architecture, 1–5 July, Rennes, France, 58.

  • Gilligan, C. A., & Van den Bosch, F. (2008). Epidemiological models for invasion and persistence of pathogens. Annual Review of Phytopathology, 46, 385–418.

    Article  PubMed  CAS  Google Scholar 

  • Girardin, G., Gigot, C., Robert, C., de Vallavielle-Pope, C., Suffert, F., & Saint-Jean, S. (2012). Effect of wheat canopy architecture and rain characteristics on on septoria splash-borne pcynidiospore. Paper presented at the International Conference Epidemiology Canopy Architecture, 1–5 July, Rennes, France, 25.

  • Godin, C., & Sinoquet, H. (2005). Functional-structural plant modelling. New Phytologist, 166(3), 705–708. doi:10.1111/j.1469-8137.2005.01445.x.

    Article  PubMed  Google Scholar 

  • Guyader, S., & Bussière, F. (2012). Comparing anthracnose dynamics and leaf wetness duration in staked and unstaked plots of water yam. Paper presented at the International Conference Epidemiology Canopy Architecture, 1–5 July, Rennes, France, 23.

  • Hau, B. (1990). Analytic models of plant disease in a changing environment. Annual Review of Phytopathology, 28, 221–245.

    Article  Google Scholar 

  • Heesterbeek, J. A. P. (2002). A brief history of R0 and a recipe for its calculation. Acta Biotheoretica, 50, 189–204.

    Article  PubMed  CAS  Google Scholar 

  • Huber, L., & Itier, B. (1990). Leaf wetness detection in a field bean canopy. Agricultural and Forestry Meteorology, 51, 281–292.

    Article  Google Scholar 

  • Huber, L., & Gillespie, T. J. (1992). Modeling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology, 30, 553–577.

    Article  Google Scholar 

  • Hugot, K., Aime, S., Conrod, S., Poupet, A., & Galiana, E. (1999). Developmental regulated mechanisms affect the ability of a fungal pathogen to infect and colonize tobacco leaves. The Plant Journal, 20(2), 163–170. doi:10.1046/j.1365-313x.1999.00587.x.

    Article  PubMed  CAS  Google Scholar 

  • Ingold, C. T. (1971). Fungal spores: Their liberation and dispersal: Oxford University Press.

  • Jeger, M. J. (1986). The potential of analytic compared with simulation approaches to modeling in plant disease epidemiology. In K. J. Leonard & W. E. Fry (Eds.), Population dynamics and management. Vol. I: Plant disease epidemiology Vol. 1 (pp. 255–281). New York: Macmillan.

    Google Scholar 

  • Jeger, M. J., & Vandenbosch, F. (1994). Threshold criteria for model-plant disease epidemics. 2. persistence and endemicity. Phytopathology, 84(1), 28–30.

    Google Scholar 

  • Kennelly, M. M., Gadoury, D. M., Wilcox, W. F., Magarey, P. A., & Seem, R. C. (2005). Seasonal development of ontogenic resistance to downy mildew in grape berries and rachises. Phytopathology, 95(12), 1445–1452.

    Article  PubMed  Google Scholar 

  • Kermack, W., & Mc Kendrick, A. (1927). Contributions to the mathemathical theory of epidemics, part 1. Proceedings of the Royal Society of London, 115, 700–721.

    Article  Google Scholar 

  • Kora, C., McDonald, M., & Boland, G. (2005). Lateral clipping influences the microclimate and development of apothecia of Sclerotinia sclerotiorum in carrots. Plant Disease, 89, 549–557.

    Article  Google Scholar 

  • Le May, C., Ney, B., Lemarchand, E., Schoeny, A., & Tivoli, B. (2008). Effect of pea plant architecture on the spatio-temporal epidemic development of ascochyta blight (Mycosphaerella pinodes) in the field. Plant Pathology, 58(2), 332–343.

    Article  Google Scholar 

  • Lebon, V., Gigot, C., Leconte, M., Pelzer, E., de Vallavieille-Pope, C., & Saint-Jean, S. (2012). Cultivar and species mixture effect on wheat septoria tritici blotch spreading. Paper presented at the International Conference on Epidemiology, Canopy, Architecture, 1–5 July, Rennes, France, 44.

  • Leser, C., & Treutter, D. (2005). Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of apple trees. Physiologia Plantarum, 123(1), 49–56. doi:10.1111/j.1399-3054.2004.00427.x.

    Article  CAS  Google Scholar 

  • Li, B., & Xu, X. (2002). Infection and development of apple scab (Venturia inaequalis) on old leaves. Journal of Phytopathology-Phytopathologische Zeitschrift, 150(11–12), 687–691. doi:10.1046/j.1439-0434.2002.00824.x.

    Article  Google Scholar 

  • Lopez, G., Favreau, R. R., Smith, C., Costes, E., Prusinkiewicz, P., & DeJong, T. M. (2008). Integrating simulation of architectural development and source-sink behaviour of peach trees by incorporating Markov chains and physiological organ function submodels into L-PEACH. Functional Plant Biology, 35(9–10), 761–771. doi:10.1071/fp08039.

    Article  Google Scholar 

  • Lovell, D. J., Parker, S. R., Hunter, T., Royle, D. J., & Coker, R. R. (1997). Influence of crop growth and structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat. Plant Pathology, 46(1), 126–138.

    Article  Google Scholar 

  • Lovell, D. J., Parker, S. R., Hunter, T., Welham, S. J., & Nichols, A. R. (2004). Position of inoculum in the canopy affects the risk of septoria tritici blotch epidemics in winter wheat. Plant Pathology, 53(1), 11–21. doi:10.1046/j.1365-3059.2003.00939.x.

    Article  Google Scholar 

  • Madden, L. V., & Boudreau, M. A. (1997). Effect of strawberry density on the spread of anthracnose caused by Colletotrichum acutatum. Phytopathology, 87(8), 828–838. doi:10.1094/phyto.1997.87.8.828.

    Article  PubMed  CAS  Google Scholar 

  • Madden, L. V., Wilson, L. L., & Ellis, M. A. (1993). Field spread of anthracnose fruit rot of strawberry in relation to ground cover and ambient weather conditions. Plant Disease, 77, 861–866.

    Article  Google Scholar 

  • Madden, L. V., Hughes, G., & Bosch, F. v. d. (2007). The study of plant disease epidemics (The study of plant disease epidemics). St. Paul: The American Phytopathology Society.

    Google Scholar 

  • Magarey, R. D., Russo, J. M., & Seem, R. C. (2006). Simulation of surface wetness with a water budget and energy balance approach. Agricultural and Forest Meteorology, 139(3–4), 373–381. doi:10.1016/j.agrformet.2006.08.016.

    Article  Google Scholar 

  • Meyer, S., Cartelat, A., Moya, I., & Cerovic, Z. G. (2003). UV-induced blue-green and far-red fluorescence along wheat leaves: a potential signature of leaf ageing. Journal of Experimental Botany, 54(383), 757–769. doi:10.1093/jxb/erg063.

    Article  PubMed  CAS  Google Scholar 

  • Molitor, D., & Berkelmann-Loehnertz, B. (2011). Simulating the susceptibility of clusters to grape black rot infections depending on their phenological development. Crop Protection, 30(12), 1649–1654. doi:10.1016/j.cropro.2011.07.020.

    Article  CAS  Google Scholar 

  • Navas-Cortés, J. A., Hau, B., & Jiménez-Díaz, R. M. (1998). Effect of sowing date, host cultivar, and race of Fusarium oxysporum f. sp. ciceris on development of fusarium wilt of chickpea. Phytopathology, 88(12), 1338–1346.

    Article  PubMed  Google Scholar 

  • Norman, J. M. (1982). Simulation of microclimates. In J. Hatfield, & I. Thomason (Eds.), Biometeorology in integrated pest.

  • Onstad, D. W. (1992). Evaluation of epidemiologic thresholds and asymptotes with variable plant densities. Phytopathology, 82(10), 1028–1032. doi:10.1094/Phyto-82-1028.

    Article  Google Scholar 

  • Pallas, B., Christophe, A., Cournede, P. H., & Lecoeur, J. (2009). Using a mathematical model to evaluate the trophic and non-trophic determinants of axis development in grapevine. Functional Plant Biology, 36(2), 156–170. doi:10.1071/fp08178.

    Article  Google Scholar 

  • Pangga, I. B., Hanan, J., & Chakraborty, S. (2011). Pathogen dynamics in a crop canopy and their evolution under changing climate. Plant Pathology, 60, 70–81.

    Article  Google Scholar 

  • Pariaud, B., Ravigné, V., Halkett, F., Goyeau, H., Carlier, J., & Lannou, C. (2009). Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathology, 58, 409–424.

    Article  Google Scholar 

  • Payne, A. F., & Smith, D. L. (2012). Development and evaluation of two pecan scab prediction models. Plant Disease, 96, 117–123.

    Article  Google Scholar 

  • Rapilly, F. (1991). L’épidémiologie en pathologie végétale: Mycoses aériennes. Paris: Institut National de la Recherche Agronomique.

    Google Scholar 

  • Rapilly, F., Fournet, F., & Skajennikoff, M. (1970). Études sur l’épidémiologie et la biologie de la rouille jaune du blé Puccinia striiformis Westendorp. Annales de Phytopathologie, 2, 5–31.

    Google Scholar 

  • Reinhardt, D., & Kuhlemeier, C. (2002). Plant architecture. EMBO Reports, 3(9), 846–851.

    Article  PubMed  CAS  Google Scholar 

  • Richard, B., Jumel, S., Rouault, F., & Tivoli, B. (2012). Influence of plant stage and organ age on the receptivity of Pisum sativum to Mycosphaerella pinodes. European Journal of Plant Pathology, 132(3), 367–379. doi:10.1007/s10658-011-9882-3.

    Article  Google Scholar 

  • Ripoche, A., Metay, A., Celette, F., & Gary, C. (2011). Changing the soil surface management in vineyards: immediate and delayed effects on the growth and yield of grapevine. Plant and Soil, 339(1–2), 259–271. doi:10.1007/s11104-010-0573-1.

    Article  CAS  Google Scholar 

  • Robert, C., Fournier, C., Andrieu, B., & Ney, B. (2008). Coupling a 3D virtual wheat plant model with a Septoria tritici epidemic model (Septo3D): a new approach to investigate plant-pathogen interactions linked to canopy architecture. Functional Plant Biology, 35(9–10), 997–1013.

    Article  Google Scholar 

  • Sache, I. (2000). Short-distance dispersal of wheat rust spores by wind and rain. Agronomie, 20, 757–767.

    Article  Google Scholar 

  • Sahile, S., Ahmed, S., Fininsa, C., Abang, M. M., & Sakhuja, P. K. (2008). Survey of chocolate spot (Botrytis fabae) disease of faba bean (Vicia faba L.) and assessment of factors influencing disease epidemics in northern Ethiopia. Crop Protection, 27(11), 1457–1463. doi:10.1016/j.cropro.2008.07.011.

    Article  Google Scholar 

  • Saint-Jean, S., Chelle, M., & Huber, L. (2004). Modelling water transfer by rain-splash in a 3D canopy using Monte Carlo integration. Agricultural and Forest Meteorology, 121(3/4), 183–196.

    Article  Google Scholar 

  • Saint-Jean, S., Testa, A., Madden, L. V., & Huber, L. (2006). Relationship between pathogen splash dispersal gradient and Weber number of impacting drops. Agricultural and Forest Meteorology, 141(2/4), 257–262.

    Article  Google Scholar 

  • Saint-Jean, S., Kerhornou, B., Derbali, F., Leconte, M., de Vallavieille-Pope, C., & Huber, L. (2008). Role of rain-splash in the progress of Septoria leaf blotch within a winter wheat variety mixture. Aspects of Applied Biology, 89, 49–54.

    Google Scholar 

  • Saudreau, M., Marquier, A., Adam, B., Monney, P., & Sinoquet, H. (2009). Experimental study of fruit temperature dynamics within apple tree crowns. Agricultural and Forest Meteorology, 149, 362–372.

    Article  Google Scholar 

  • Saudreau, M., Marquier, A., Adam, B., & Sinoquet, H. (2011). Modelling fruit temperature dynamics within apple tree crowns using virtual plants. Annals of Botany, 108, 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Schnee, S., Jolivet, J., & Calonnec, A. (2011). Consideration of dynamical plant-pathogen interactions for an improved management of powdery mildew epidemics in grapevine. IOBC/wprs Bulletin, 67, 131–138.

    Google Scholar 

  • Schoeny, A., Menat, J., Darsonval, A., Rouault, F., Jumel, S., & Tivoli, B. (2008). Effect of pea canopy architecture on splash dispersal of Mycosphaerella pinodes conidia. Plant Pathology, 57, 1073–1085.

    Article  Google Scholar 

  • Schoeny, A., Jumel, S., Rouault, F., Lemarchand, E., & Tivoli, B. (2010). Effect and underlying mechanisms of pea-cereal intercropping on the epidemic development of ascochyta blight. European Journal of Plant Pathology, 126(3), 317–331. doi:10.1007/s10658-009-9548-6.

    Article  Google Scholar 

  • Schwartz, H., Steadman, J., & Coyne, D. (1978). Influens of Phaseolus vulgaris blossoming characteristics and canopy structure upon reaction to Sclerotinia sclerotiorum. Phytopathology, 68, 465–470.

    Article  Google Scholar 

  • Segarra, J., Jeger, M. J., & van den Bosch, F. (2001). Epidemic dynamics and patterns of plant diseases. Phytopathology, 91(10), 1001–1010. doi:10.1094/phyto.2001.91.10.1001.

    Article  PubMed  CAS  Google Scholar 

  • Sentelhas, P., Gillespie, T., Batzer, J., Gleason, M., Monteiro, J., Pezzopane, J., et al. (2005). Spatial variability of leaf wetness duration in different crop canopies. International Journal of Biometeorology, 49, 363–370.

    Article  PubMed  Google Scholar 

  • Shafia, A., Sutton, J. C., Yu, H., & Fletcher, R. A. (2001). Influence of preinoculation light intensity on development and interactions of Botrytis cinerea and Clonostachys rosea in tomato leaves. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 23(4), 346–357.

    Article  Google Scholar 

  • Shaw, M. W. (1990). Effects of temperature, leaf wetness and cultivar on the latent period of Mycosphaerella graminicola on winter wheat. Plant Pathology, 39(2), 255–268.

    Article  Google Scholar 

  • Simon, S., Lauri, P. E., Brun, L., Defrance, H., & Sauphanor, B. (2006). Does manipulation of fruit-tree architecture affect the development of pests and pathogens? A case study in an organic apple orchard. The Journal of Horticultural Science and Biotechnology, 81(4), 765–773.

    Google Scholar 

  • Suffert, F., & Sache, I. (2011). Relative importance of different types of inoculum to the establishment of Mycosphaerella graminicola in wheat crops in north-west Europe. Plant Pathology, 60, 878–889.

    Article  Google Scholar 

  • Tenenhaus, M., Esposito Vinzi, V., Chatelinc, Y., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.

    Article  Google Scholar 

  • Tivoli, B., Calonnec, A., Richard, B., Ney, B., & Andrivon, D. (2012). How do plant architectural traits modify the expression and development of epidemics? Consequences for reducing epidemic progress. European Journal of Plant Pathology. doi:10.1007/s10658-012-0066-6.

  • Tremblay, N., Wang, Z., & Cerovic, Z. G. (2011). Sensing crop nitrogen status with fluorescence indicators. Agronomy for Sustainable Development. doi:10.1007/s13593-011-0041-1.

  • Ulevicius, V., Peciulyte, D., Lugauskas, A., & Andriejauskiene, J. (2004). Field study on changes in viability of airborne fungal propagules exposed to UV radiation. Environmental Toxicology, 19, 437–441.

    Article  PubMed  CAS  Google Scholar 

  • Valdes-Gomez, H., Fermaud, M., Roudet, J., Calonnec, A., & Gary, C. (2008). Grey mould incidence is reduced on grapevines with lower vegetative and reproductive growth. Crop Protection, 27(8), 1174–1186.

    Article  Google Scholar 

  • Valdes-Gomez, H., Gary, C., Cartolaro, P., Lolas-Caneo, M., & Calonnec, A. (2011). Powdery mildew development is positively influenced by grapevine vegetative growth induced by different soil management strategies. Crop Protection, 30, 1168–1177.

    Article  Google Scholar 

  • Van den Bosch, F., McRoberts, N., Van den Berg, F., & Madden, L. V. (2008). The basic reproduction number of plant pathogens: Matrix approaches to complex dynamics. Phytopathology, 98, 239–249.

    Article  PubMed  Google Scholar 

  • Van der Plank, J. (1963). Plant diseases: Epidemic and control. New-York: Academic.

    Google Scholar 

  • Verhulst, P. F. (1845). Recherches mathématiques sur la loi d’accroissement de la population. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles, 18, 1–42.

    Google Scholar 

  • Willocquet, L., Colombet, D., Rougier, M., Fargues, J., & Clerjeau, M. (1996). Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. European Journal of Plant Pathology, 102(5), 441–449. doi:10.1007/bf01877138.

    Article  Google Scholar 

  • Wilson, P. A., & Chakraborty, S. (1998). The virtual plant: a new tool for the study and management of plant diseases. Crop Protection, 17(3), 231–239.

    Article  Google Scholar 

  • Wolfe, M. S. (1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology, 23(1), 251–273.

    Article  Google Scholar 

  • Yang, X., & Te Beest, D. (1991). Rain dispersal o f Colletotrichum gloeosporioides under simulated rice field conditions. Phytopathology, 81 :815 (Abstr.).

  • Yang, X., Madden, L. V., Wilson, L. L., & Ellis, M. A. (1990). Effects of surface topography and rain intensity on splash dispersal of Colletotrichum acutatum. Phytopathology, 80, 1115–1120.

    Article  Google Scholar 

  • Zahavi, T., & Reuveni, M. (2012). Effect of grapevine training systems on susceptibility of berries to infection by Erysiphe necator. European Journal of Plant Pathology, 133(3), 511–515.

    Article  Google Scholar 

  • Zahavi, T., Reuveni, M., Scheglov, D., & Lavee, S. (2001). Effect of grapevine training systems on development of powdery mildew. European Journal of Plant Pathology, 107, 495–501.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Agence Nationale de la Recherche (ANR): project ARCHIDEMIO grant ANR-08-STRA-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Calonnec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calonnec, A., Burie, JB., Langlais, M. et al. Impacts of plant growth and architecture on pathogen processes and their consequences for epidemic behaviour. Eur J Plant Pathol 135, 479–497 (2013). https://doi.org/10.1007/s10658-012-0111-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0111-5

Keywords

Navigation