Skip to main content

Advertisement

Log in

Impacts of climate change on wheat anthesis and fusarium ear blight in the UK

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Climate change will affect both growth of agricultural crops and diseases that attack them but there has been little work to study how its impacts on crop growth influence impacts on disease epidemics. This paper investigates how impacts of climate change on wheat anthesis date will influence impacts on fusarium ear blight in UK mainland arable areas. A wheat growth model was used for projections of anthesis dates, and a weather-based model was developed for use in projections of incidence of fusarium ear blight in the UK. Daily weather data, generated for 14 sites in arable areas of the UK for a baseline (1960–1990) scenario and for high and low CO2 emissions in the 2020s and 2050s, were used to project wheat anthesis dates and fusarium ear blight incidence for each site for each climate change scenario. Incidence of fusarium ear blight was related to rainfall during anthesis and temperature during the preceding 6 weeks. It was projected that, with climate change, wheat anthesis dates will be earlier and fusarium ear blight epidemics will be more severe, especially in southern England, by the 2050s. These projections, made by combining crop and disease models for different climate change scenarios, suggest that improved control of fusarium ear blight should be a high priority in industry and government strategies for adaptation to climate change to ensure food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious disease of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution, 19, 535–544.

    Article  PubMed  Google Scholar 

  • Anonymous. (2009). 1.02 billion people hungry; one sixth of humanity undernourished—more than ever before. FAO (Food and Agriculture Organisation of the United Nations). Retrieved June 19, 2009 from http://www.fao.org/news/story/en/item/20568/icode/

  • Barnes, A. P., Wreford, A., Butterworth, M. H., Semenov, M. A., Moran, D., Evans, N., & Fitt, B. D. L. (2010). Adaptation to increasing severity of phoma stem canker on winter oilseed rape in the UK under climate change. Journal of Agricultural Science, 148, 683–694.

    Google Scholar 

  • Butterworth, M. H., Semenov, M. A., Barnes, A., Moran, D., West, J. S., & Fitt, B. D. L. (2010). North-south divide: contrasting impacts of climate change on crop yields in Scotland and England. Journal of the Royal Society Interface, 7, 123–130.

    Article  Google Scholar 

  • Chakraborty, S. (2005). Potential impact of climate change on plant-pathogen interactions. Australasian Plant Pathology, 34, 443–448.

    Article  Google Scholar 

  • Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant Pathology 60 (in press).

  • Chakraborty, S., Tiedemann, A. V., & Teng, P. S. (2000). Climate change: potential impact on plant diseases. Environmental Pollution, 37, 399–426.

    Google Scholar 

  • Chakraborty, S., Liu, C. J., Mitter, V., Scott, J. B., Akinsanmi, O. A., Ali, S., et al. (2005). Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management. Australasian Plant Pathology, 35, 643–655.

    Article  Google Scholar 

  • Coakley, M., Scherm, H., & Chakraborty, S. (1999). Climate change and plant disease management. Annual Review of Phytopathology, 37, 399–426.

    Article  PubMed  CAS  Google Scholar 

  • Collins, M., Tett, S. F. B., & Cooper, C. (2001). The international climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 17, 61–81.

    Article  Google Scholar 

  • De Wolf, E. D., & Isard, S. A. (2007). Disease cycle approach to plant disease prediction. Annual Review of Phytopathology, 45, 203–220.

    Article  PubMed  Google Scholar 

  • De Wolf, E. D., Madden, L. V., & Lipps, P. E. (2003). Risk assessment models for wheat fusarium head blight epidemics based on within-season weather data. Phytopathology, 93, 428–35.

    Article  PubMed  Google Scholar 

  • Del Ponte, E. M., Fernandes, J. M. C., & Pavan, W. (2005). A risk infection simulation model for Fusarium head blight of wheat. Fitopatologia Brasileira, 30, 634–642.

    Google Scholar 

  • Evans, N., Baierl, A., Semenov, M. A., Gladders, P., & Fitt, B. D. L. (2008). Range and severity of a plant disease increased by global warming. Journal of the Royal Society Interface, 5, 525–531.

    Article  Google Scholar 

  • Evans, N., Butterworth, M. H., Baierl, A., Semenov, M. A., West, J. S., Barnes, A., et al. (2010). The impact of climate change on disease constraints on production of oilseed rape. Food Security, 2, 143–156.

    Article  Google Scholar 

  • Ewert, F., Rodriguez, D., Jamieson, P., Semenov, M. A., Mitchell, R. A. C., Goudriaan, J., et al. (2002). Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental and climatic conditions. Agriculture Ecosystems and Environment, 93, 249–266.

    Article  Google Scholar 

  • Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: genomes to ecosystems. Annual Review of Phytopathology, 44, 489–509.

    Article  PubMed  CAS  Google Scholar 

  • Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827–2838.

    Article  PubMed  CAS  Google Scholar 

  • Holdgate, S. (2009). Improving the diversity of race non-specific resistance mechanisms available in wheat to combat fusarium ear blight disease. PhD thesis, Cranfield University, UK.

  • Hughes, D. J., West, J. S., Atkins, S. D., Gladders, P., Jeger, M. J., & Fitt, B. D. L. (2011). Effects of disease control by fungicides on Greenhouse Gas (GHG) emissions by UK arable crop production. Pest Management Science (in press).

  • Hulme, M., Jenkins, G. J., Lu, X., Turnpenny, J. R., Mitchell, T. D., Jones, R. G., et al. (2002). Climate change scenarios for the United Kingdom: The UKCIP02 scientific report, tyndall centre for climate change research (p. 120). Norwich: School of Environmental Sciences, University of East Anglia.

    Google Scholar 

  • Jamieson, P. D., & Semenov, M. A. (2000). Modelling nitrogen uptake and redistribution in wheat. Field Crops Research, 68, 21–29.

    Article  Google Scholar 

  • Jamieson, P. D., Semenov, M. A., Brooking, I. R., & Francis, G. S. (1998). Sirius: a mechanistic model of wheat response to environmental variation. European Journal of Agronomy, 8, 161–179.

    Article  Google Scholar 

  • Lancashire, P. D., Bleiholder, H., van den Boom, T., Langeluddeke, P., Stauss, R., Weber, E., et al. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119, 561–601.

    Article  Google Scholar 

  • Luo, Y., Tebeest, D. O., Teng, P. S., & Fabellar, N. G. (1995). Simulation studies on risk analysis of rice leaf blast epidemics associated with global climate change in several Asian countries. Journal of Biogeography, 22, 673–678.

    Article  Google Scholar 

  • Madden, L. V., & Paul, P. A. (2009). Assessing heterogeneity in the relationship between wheat yield and fusarium head blight intensity using random-coefficient mixed models. Phytopathology, 99, 850–860.

    Article  PubMed  CAS  Google Scholar 

  • Mahmuti, M., West, J. S., Watts, J., Gladders, P., & Fitt, B. D. L. (2009). Controlling crop disease contributes to both food security and climate change mitigation. International Journal of Agricultural Sustainability, 7, 189–202.

    Article  Google Scholar 

  • Metz, B., Davidson, O. R., Bosch, P. R., Dave, R., & Meyer, L. A. (2007). Climate change 2007: Mitigation of climate change. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. New York: Cambridge University Press.

    Google Scholar 

  • Miraglia, M., Marvin, H. J. P., Kleter, G. A., Battilani, P., Brera, C., Coni, E., et al. (2009). Climate change and food safety: an emerging issue with special focus on Europe. Food and Chemical Toxicology, 47, 1009–1021.

    Article  PubMed  CAS  Google Scholar 

  • Moschini, R. C., Pioli, R., Carmona, M., & Sacchi, O. (2001). Empirical predictions of wheat head blight in the Northern Argentinean Pampas region. Crop Science, 41, 1541–1545.

    Article  Google Scholar 

  • Musa, T., Hecker, S., Vogelgsang, S., & Forrer, H. R. (2007). Forecasting of Fusarium head blight and deoxynivanol content in winter wheat with FusaProg*. European Plant Protection Organisation Bulletin, 37, 283–289.

    Google Scholar 

  • Nakicenovic, N. (2000). Greenhouse gas emissions scenarios. Technological Forecasting and Social Change, 65, 149–166.

    Article  Google Scholar 

  • Paul, P. A., Lipps, P. E., De Wolf, E., Shaner, G., Buechley, G., Adhikari, T., et al. (2007). A distributed lag analysis of the relationship between Gibberella zeae inoculum density on wheat spikes and weather variables. Phytopathology, 97, 1608–1624.

    Article  PubMed  CAS  Google Scholar 

  • Prandini, A., Sigolo, S., Filippi, L., Battilani, P., & Piva, G. (2009). Review of predictive models for Fusarium head blight and related mycotoxin contamination in wheat. Food and Chemical Toxicology, 47, 927–931.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, V., Giosue, S., Pattori, E., Spanna, F., & Del Vecchio, A. (2003). A model estimating the risk of Fusarium head blight on wheat. European Plant Protection Organisation Bulletin, 33, 421–425.

    Google Scholar 

  • Schaafsma, A. W., & Hooker, D. C. (2007). Climatic models to predict occurrence of Fusarium toxins in wheat and maize. International Journal of Food Microbiology, 119, 116–125.

    Article  PubMed  CAS  Google Scholar 

  • Semenov, M. A. (2007). Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agricultural and Forest Meteorology, 144, 127–138.

    Article  Google Scholar 

  • Semenov, M. A. (2009). Impacts of climate change on wheat in England and Wales. Journal of the Royal Society Interface, 6, 343–350.

    Google Scholar 

  • Stern, N. (2007). The economics of climate change: The Stern review. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tuck, G., Glendining, M. J., Smith, P., House, J. I., & Wattenbach, M. (2006). The potential distribution of bioenergy crops in Europe under present and future climate. Biomass and Bioenergy, 30, 183–197.

    Article  Google Scholar 

  • Windels, C. E. (2000). Economic and social impacts of fusarium head blight: changing farms and rural communities in the northern Great Plains. Phytopathology, 90, 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X.-M., & Nicholson, P. (2009). Community ecology of fungal pathogens causing wheat head blight. Annual Review of Phytopathology, 47, 83–103.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X.-M., Monger, W., Ritieni, A., & Nicholson, P. (2007). Effect of temperature and duration of wetness during initial infection periods on disease development, fungal biomass and mycotoxin concentrations on wheat inoculated with single, or combinations of, Fusarium species. Plant Pathology, 56, 943–956.

    Article  CAS  Google Scholar 

  • Xu, X.-M., Parry, D. W., Nicholson, P., Thomsett, M. A., Simpson, D., Edwards, S. G., et al. (2008). Within-field variability of Fusarium head blight pathogens and their associated mycotoxins. European Journal of Plant Pathology, 120, 21–34.

    Article  CAS  Google Scholar 

  • Yang, L., van der Lee, T., Yang, X., Yu, D., & Waalwijk, C. (2008). Fusarium populations on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology, 98, 719–727.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the UK Biotechnology and Biological Sciences Research Council (BBSRC, Rothamsted Centre for Bioenergy and Climate Change ISPG), Department for Environment, Food and Rural Affairs (Defra, including the Sustainable Arable LINK programme, CLIMDIS project LK 09111) and HGCA for funding this research. We thank Sarah Holdgate, Rohan Lowe, Jim McVittie, Eric Ober and Aiming Qi for supplying date of anthesis, fusarium ear blight incidence and weather data, and Pierre Stratonovitch for assistance in using Sirius. UK weather data variables were calculated from Crown copyright data supplied by the UK Met Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. L. Fitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madgwick, J.W., West, J.S., White, R.P. et al. Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. Eur J Plant Pathol 130, 117–131 (2011). https://doi.org/10.1007/s10658-010-9739-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9739-1

Keywords

Navigation