Skip to main content
Log in

Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cylindrocarpon species are known to be a component of the pathogen/pest complex that incites apple replant disease. In South Africa, no information is available on apple associated Cylindrocarpon species and their pathogenicity. Therefore, these aspects were investigated. Among the isolates recovered from apple roots in South Africa, four species (C. destructans, C. liriodendri, C. macrodidymum and C. pauciseptatum) were identified using β-tubulin gene sequencing and phylogenetic analysis. This is the first report of C. liriodendri, C. macrodidymum and C. pauciseptatum on apple trees. Cylindrocarpon macrodidymum was the most prevalent. Isolates within each of the four species were pathogenic towards apple seedlings, but varied in their virulence. With a single exception, all isolates were able to induce lesion development on seedling roots. Only 57% of the isolates, which represented all four species, were able to cause a significant reduction in seedling weight and/or height. The greatest seedling growth reductions were caused by two isolates of C. destructans, and one isolate each of C. liriodendri and C. macrodidymum. A quantitative real-time polymerase chain reaction (qPCR) method was developed for simultaneous detection of all four Cylindrocarpon species. qPCR analyses of Cylindrocarpon from the roots of inoculated seedlings showed that the amount of Cylindrocarpon DNA in roots was not correlated to seedling growth reductions (weight and height) or root rot. The qPCR method is, however, very useful for the rapid identification of apple associated Cylindrocarpon species in roots. The technique may also hold potential for being indicative of Cylindrocarpon disease potential if rhizosphere soil rather than roots are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alaniz, S., Armengol, J., Leόn, M., García-Jiménez, J., & Abad-Campos, P. (2009). Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113, 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Barbetti, M. J. (2005). Cylindrocarpon didymum – a root pathogen of subterranean clover in the lower south-west of Western Australia. Australasian Plant Pathology, 34, 111–114.

    Article  Google Scholar 

  • Booth, C. D. (1966). The genus Cylindrocarpon. Mycological Papers (CMI), 104, 1–56.

    Google Scholar 

  • Braun, P. G. (1991). The combination of Cylindrocarpon lucidum and Pythium irregulare as a possible cause of apple replant disease in Nova Scotia. Canadian Journal of Plant Pathology, 13, 291–297.

    Article  Google Scholar 

  • Braun, P. G. (1995). Effects of Cylindrocarpon and Pythium species on apple seedlings and potential role in apple replant disease. Canadian Journal of Plant Pathology, 17, 336–341.

    Article  Google Scholar 

  • Brayford, D. (1993). Cylindrocarpon. In L. L. Singleton, J. D. Mihail, & C. M. Rush (Eds.), Methods for research on soilborne phytopathogenic fungi (pp. 103–106). St. Paul: American Phytopathologic Society Press.

    Google Scholar 

  • Carstens, E., Van Niekerk, J. M., Smit, W. A., & Fourie, P. H. (2010). Resolving the status of Neonectria ditissima in South Africa. Australasian Plant Pathology, 39, 43–45.

    Article  Google Scholar 

  • Dubrovsky, S., & Fabritius, A. (2007). Occurrence of Cylindrocarpon spp. in nursery grapevines in California. Phytopathologia Mediterranea, 46, 84–86.

    Google Scholar 

  • Dullahide, S. R., Stirling, G. R., Nikulin, A., & Stirling, A. M. (1994). The role of nematodes, fungi, bacteria, and abiotic factors in the etiology of apple replant problems in the Granite Belt of Queensland. Australian Journal of Experimental Agriculture, 34, 1177–1182.

    Article  Google Scholar 

  • Gilliam, C. H., Watson, M. E., & Sheppard, W. J. (1982). Fertilization of cotoneaster in a pine bark medium. Scientia Horticulturae, 18, 185–190.

    Article  Google Scholar 

  • Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Review of Educational Research, 42, 237–288.

    Google Scholar 

  • Halleen, F., Schroers, H.-J., Groenewald, J. Z., & Crous, P. W. (2004). Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black foot disease of grapevines (Vitis spp.). Studies in Mycology, 50, 431–455.

    Google Scholar 

  • Halleen, F., Schroers, H. J., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2006). Neonectria liriodendri sp. nov., the main causal agent of black foot disease of grapevine. Studies in Mycology, 55, 227–234.

    Article  PubMed  Google Scholar 

  • Hamelin, R. C., Bérubé, P., Gignac, M., & Bourassa, M. (1996). Identification of root rot fungi in nursery seedling by nested multiplex PCR. Applied Environmental Microbiology, 62, 4026–4031.

    Google Scholar 

  • Harrison, C. J., & Langdale, J. A. (2006). A step by step guide to phylogeny reconstruction. The Plant Journal, 45, 561–572.

    Article  PubMed  CAS  Google Scholar 

  • Jaffee, B. A., Abawi, G. S., & Mai, W. F. (1982). Fungi associated with roots of apple seedlings grown in soil from an apple replant site. Plant Disease, 66, 942–944.

    Article  Google Scholar 

  • John, J. A., & Quenouille, M. H. (1977). Experiments: Design and analysis. England: Charles Griffin & Co Ltd.

    Google Scholar 

  • Katoh, K., & Toh, H. (2008). Recent developments in the MAFFT sequence alignment program. Bioinformatics, 9, 286–298.

    PubMed  CAS  Google Scholar 

  • Kernaghan, G., Reeleder, R. D., & Hoke, S. M. T. (2007). Quantification of Cylindrocarpon destructans f. sp. panacis in soils by real-time PCR. Plant Pathology, 56, 508–516.

    Article  CAS  Google Scholar 

  • Lee, S. B., & Taylor, J. W. (1990). Isolation of DNA from fungal mycelia and single spores. In M. A. Inni, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A guide to methods and applications (pp. 282–287). San Diego: Academic Press.

    Google Scholar 

  • Levene, H. (1960). Robust test in the equality of variance. In I. P. Alto (Ed.), Contributions to probability and statistics (pp. 278–292). California: Stanford University Press.

    Google Scholar 

  • Lievens, B., Brouwer, M., Vanachter, A. C. R. C., Cammue, B. P. A., & Thomma, B. P. H. J. (2006). Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Science, 171, 155–165.

    Article  CAS  Google Scholar 

  • Manici, L. M., Ciavatta, C., Kelderer, M., & Erschbaumer, G. (2003). Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant and Soil, 256, 315–324.

    Article  CAS  Google Scholar 

  • Mantiri, F., Samuels, G. J., Rahe, J. E., & Honda, B. M. (2001). Phylogenetic relationships in Neonectria species having Cylindrocarpon anamorphs inferred from mitochondrial ribosomal DNA sequences. Canadian Journal of Botany, 79, 334–340.

    Article  CAS  Google Scholar 

  • Mazzola, M. (1998). Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology, 88, 930–938.

    Article  PubMed  CAS  Google Scholar 

  • McCartney, H. A., Foster, S. J., Fraaije, B. A., & Ward, E. (2003). Molecular diagnostics for fungal plant pathogens. Pest Management Science, 59, 129–142.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetic Evolution, 7, 103–116.

    Article  Google Scholar 

  • Otto, R. L. (1998). An introduction to statistical methods and data analyses. California: Duxbury Press.

    Google Scholar 

  • Petit, E., & Gubler, W. D. (2005). Characterization of Cylindrocarpon species, the cause of black foot disease of grapevine in California. Plant Disease, 89, 1051–1059.

    Article  CAS  Google Scholar 

  • SAS. (1999). SAS/STAT User’s Guide. Version 8, Volume 2. North Carolina: SAS Institute Inc.

    Google Scholar 

  • Schroers, H.-J., Zerjav, M., Munda, A., Halleen, F., & Crous, P. W. (2008). Cylindrocarpon pauciseptatum sp. nov., with notes on Cylindrocarpon species with wide, predominantly 3-septate macroconidia. Mycological Research, 112, 82–92.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.

    Google Scholar 

  • Strauss, J., & Labuschagne, N. (1995). Pathogenicity of Fusarium solani isolates on citrus roots and evaluation of different inoculum types. Toegepaste Plantwetenskap, 9, 48–52.

    Google Scholar 

  • Sutherland, J. R. (1977). Corky root disease of Douglas-fir seedlings: pathogenicity of the nematode Xiphinema bakeri alone and in combination with the fungus Cylindrocarpon destructans. Canadian Journal of Forest Research, 7, 41–46.

    Article  Google Scholar 

  • Swinburne, T. R. (1975). European canker of apple (Nectria galligena). Review of Plant Pathology, 54, 789–799.

    Google Scholar 

  • Swofford, D. L. (2002). PAUP 4.0b10: Phylogenetic analysis using parsimony. Sunderland: Sinauer Associates, Inc., Publishers.

    Google Scholar 

  • Van Schoor, L., Denman, S., & Cook, N. C. (2009). Characterisation of apple replant disease under South African conditions and potential biological management strategies. Scientia Horticulturae, 119, 153–162.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adéle McLeod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewoldemedhin, Y.T., Mazzola, M., Mostert, L. et al. Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. Eur J Plant Pathol 129, 637–651 (2011). https://doi.org/10.1007/s10658-010-9728-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9728-4

Key words

Navigation