Skip to main content
Log in

Hydrogeochemical controls on mobilization of arsenic and associated health risk in Nagaon district of the central Brahmaputra Plain, India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In recent years, elevated concentration of arsenic (As) in groundwater in the northeastern states of India has become a major cause of concern. Since many regions of the Brahmaputra plains are reported with groundwater As contamination, an attempt was made to study the As contamination and factors governing its release in the Nagaon district in Brahmaputra floodplain, based on various water types, relation of As with other major ions and with various depth profiles. The origin of groundwater mineralization and the processes responsible for As enrichment in groundwater was determined by calculating saturation index using PHREEQC code. Multivariate statistical analysis was carried out for identification of As-releasing mechanism based on rock–water interaction. Principle component analysis of physicochemical parameters revealed the association of As with SiO2 and Cl in pre-monsoon and the fact that alkaline condition favors release of As. The relation between As and Fe shows that reductive dissolution of solid Fe oxide and hydroxide phases could be the source of As in Nagaon district. The result of hierarchical cluster analysis indicates that As release could also be associated with the agrochemicals application. Health risk assessment revealed that children are more susceptible to carcinogenic as well as non-carcinogenic health impact with consumption of As-contaminated drinking water. The male population is more susceptible to cancer as compared to females as the average water consumption is higher in case of male. Overall, the study highlights the health risk assessment is a matter of chief concern in this study as the younger generation are at higher risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acharyya, S. K., & Shah, B. A. (2004). Risk of arsenic contamination in groundwater affecting Ganga Alluvial Plain, India. Environmental Health Perspective, 112, 19–20.

    Article  Google Scholar 

  • Agriculture Contingency Plan for District, Nagaon. (2012). http://agricoop.nic.in/Agriculture%20Contingency%20Plan/Assam/ASSAM16-NAGAON-26.7.2012.pdf.

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A., et al. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19, 181–200.

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA). (1995). Standard methods for the examination of water and waste water (19th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Bhagabati, A. K., Kar, B. K., & Bora, A. K. (2001). Geography of Assam. New Delhi: Rajesh Publication.

    Google Scholar 

  • Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of Arsenic-contaminated Groundwater in Alluvial Aquifers from Delta Plains, Eastern India: options for Safe Drinking Water Supply. Water Resources Development, 13(1), 79–92.

    Article  Google Scholar 

  • Bhattacharya, P., Jovanovic, D., & Polya, D. (2014). Best practice guide on the control of arsenic in drinking water. UK: IWA Publishing.

  • Cerling, T. E., Pederson, B. L., & Damm, K. L. V. (1989). Sodium-calcium ion exchange in the weathering of shales: Implications for global weathering budgets. Geology, 17, 552–554.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Sengupta, M. K., Rahman, M. M., Ahmed, S., Chowdhury, U. K., & Hossain, M. A. (2004). Groundwater arsenic contamination and its health effects in the Ganga–Meghna–Brahmaputra plain. Journal of Environmental Monitoring, 6, 74–83.

    Article  Google Scholar 

  • Chetia, M., Chatterjee, S., Banerjee, S., Nath, M. J., Singh, L., Srivastava, R. B., & Sarma, H. P. (2011). Groundwater arsenic contamination in the Brahmaputra river basin: A water quality assessment in the Golaghat (Assam), India. Environmental Monitoring and Assessment, 173, 371–385.

    Article  CAS  Google Scholar 

  • Choudhury, R., Sharma, P., Mahanta, C., & Sharma, H. P. (2015). Evaluation of the processes controlling arsenic contamination in parts of the Brahmaputra floodplains in Assam, India. Environmental Earth Science, 73(8), 4473–4482.

    Article  CAS  Google Scholar 

  • Coetsiers, M., & Walraevens, K. (2006). Chemical characterization of the Neogene Aquifer, Belgium. Hydrogeology Journal, 14, 1556–1568.

    Article  CAS  Google Scholar 

  • Concha, G., Nermell, B., & Vahter, M. V. (1998). Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina. Environmental Health Perspective, 106(6), 355–359.

    Article  CAS  Google Scholar 

  • Craig, E., & Anderson, M. P. (1979). The effects of urbanization of ground water quality. A case study of ground water ecosystems. Environmental Conservation, 30(2), 104–130.

    Google Scholar 

  • Das, B. K., & Kaur, P. (2001). Major ion chemistry of Renuka lake and weathering processes, Sirmaur district, Himachal Pradesh, India. Environmental Geology, 40, 908–917.

    Article  CAS  Google Scholar 

  • Das, A., & Kumar, M. (2015). Integrated evaluation of Arsenic enrichment processes in groundwater, Diphu, Northeast India. CLEAN Soil, Air, Water, 43(11), 1445–1558.

    Article  Google Scholar 

  • Das, N., Patel, A. K., Deka, G., Das, A., Sarma, K. P., & Kumar, M. (2015). Geochemical controls and future perspective of arsenic mobilization for sustainable groundwater management: A study from Northeast India. Groundwater for Sustainable Development,. doi:10.1016/j-gsd.2015.12.002.

    Google Scholar 

  • Durov, S. A. (1948). Natural waters and graphical representation of their composition. DoklAkadNauk SSSR, 59, 87–90.

    CAS  Google Scholar 

  • Enmark, G., & Nordborg, D. (2007). Arsenic in the groundwater of the Brahmaputra floodplains, Assam, India—Source, distribution and release, mechanisms. Minor Field Study 131; Committee of Tropical Ecology, ISSN, 1653–5634.

  • Farooqi, A., Masuda, H., & Firdous, N. (2007). Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environmental Pollution, 145, 839–849.

    Article  CAS  Google Scholar 

  • Fisher, R. S., & Mulican, W. F, I. I. I. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan desert, Trans-Pecos, Rexas, USA. Journal of Hydrogeology, 10(4), 455–474.

    Google Scholar 

  • Food and Nutrition Board. (2004). Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC: The National Academies Press.

    Google Scholar 

  • Garrels, R. M., & Christ, C. L. (1965). Solutions, minerals, and equilibria. New York: Harper & Row. 450.

    Google Scholar 

  • Garrels, R. M., & Mackenzie, F. T. (1971). Evolution of sedimentary rocks. New York: WW Norton.

    Google Scholar 

  • Gebel, T. (2000). Confounding variables in the environmental toxicology of arsenic. Toxicology, 144, 155–162.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanism controlling world water chemistry. Science, 170(10), 1088–1090.

    Article  CAS  Google Scholar 

  • Goswami, R., Rahmana, M. M., Murrill, M., Sarma, K. P., Thakur, R., & Chakraborti, D. (2014). Arsenic in the groundwater of Majuli—The largest river island of the Brahmaputra: Magnitude of occurrence and human exposure. Journal of Hydrology, 518, 354–362.

    Article  CAS  Google Scholar 

  • Grandjean, A. C. (2005). Water requirements, impinging factors and recommended intakes. In Nutrients in drinking water (pp. 25–40). Geneva: WHO.

  • Guler, C., Thyne, G. D., Mccray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10, 455–474.

    Article  CAS  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, M. J., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Research, 34, 807–816.

    Article  CAS  Google Scholar 

  • Kim, K., Kim, S. H., Jeong, G. Y., & Kim, R. H. (2012a). Relations of As concentrations among groundwater, soil, and bedrock in Chungnam, Korea: Implications for As mobilization in groundwater according to the As-hosting mineral change. Journal of Hazardous Material, 199–200, 25–35.

    Article  Google Scholar 

  • Kim, S. H., Kim, K., Ko, K. S., Kim, Y., & Lee, K. S. (2012b). Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere, 87(8), 851–856.

    Article  CAS  Google Scholar 

  • Klovan, J. E. (1975). R- and Q-mode factor analysis. In R. B. Mc Cammon (Ed.), Concepts in geostatistics (pp. 21–69). New York: Springer.

    Chapter  Google Scholar 

  • Krainov, S. R., BelousovaA, P., & Ryzhenko, B. N. (2001). Formation of high-Alkali groundwater in upper aquifers. Water Resources, 28(5), 491–501.

    Article  CAS  Google Scholar 

  • Kumar, M., Furumai, H., Kurisu, F., & Kasuga, I. (2010a). Evaluating the mobile heavy metal pool in soak-away sediment, road dust and soil through sequential extraction and isotopic exchange. Water Science and Technology, 62(4), 920–928.

    Article  CAS  Google Scholar 

  • Kumar, M., Kumar, P., Ramanathan, A. L., Bhattacharya, P., Thunvik, R., Singh, U. K., et al. (2010b). Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. Journal of Geochemical Exploration, 105(3), 83–94.

    Article  CAS  Google Scholar 

  • Kumar, P., Kumar, M., Ramanathan, A. L., & Tsujimura, M. (2010c). Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: A source identification perspective. Environmental Geochemisty & Health, 32, 129–146.

    Article  CAS  Google Scholar 

  • Kumar, M., Kumar, B., Rao, M. S., & Ramanathan, A. L. (2011). Identification of aquifer-recharge zones and sources in an urban development area (Delhi, India), by correlating isotopic tracers with hydrological features. Hydrogeology Journal, 19, 463–474.

    Article  CAS  Google Scholar 

  • Kumar, M., Kumari, K., Singh, K. U., & Ramanathan, A. L. (2009). Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: Conventional graphical and multivariate statistical approach. Environmental Geology, 57, 873–884.

    Article  CAS  Google Scholar 

  • Kumar, M., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039.

    Article  CAS  Google Scholar 

  • Kumar, M., Rao, M. S., Deka, J. P., Ramanathan, A. L., & Kumar, B. (2015). Integrated hydrogeochemical, isotopic and geomorphological depiction of the groundwater salinization in the aquifer system of Delhi, India. Journal of Asian Earth Sciences, 111, 936–947.

    Article  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Mahanta, C., Enmark, G., Nordborg, E., Sracek, O., Nath, B., Nickson, R. T., et al. (2015). Hydrogeochemical controls on mobilization of arsenic in groundwater of a part of Brahmaputra river floodplain, India. Journal of Hydrology: Regional Studies, 4, 154–171.

    Google Scholar 

  • Mandal, K. B., & Suzuki, T. K. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Maya, A. L., & Loucks, M. D. (1995). Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. Journal of Hydrology, 172, 31–59.

    Article  Google Scholar 

  • McArthur, M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: The example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1255–1293.

    Article  CAS  Google Scholar 

  • Meliker, J. R., Slotnick, M. J., Avruskin, G. A., Haack, S. K., & Nriagu, J. O. (2008). Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater. Environmental Geochemistry and Health, 31(1), 147–157.

    Article  Google Scholar 

  • Mukherjee, A., Brömssen, V. M., Scanlon, R. B., Bhattacharya, P., Fryar, E. A., Hasan, A. M., et al. (2008). Hydrogeochemical comparison and effects of overlapping redox zones on groundwater arsenic near the Western (Bhagirathi sub-basin, India) and Eastern (Meghna sub-basin, Bangladesh) margins of the Bengal Basin. Journal of Contaminant Hydrology, 99, 31–48.

    Article  CAS  Google Scholar 

  • Nath, B., Jeana, J. S., Lee, M. K., Yanga, H. J., & Liu, C. C. (2008). Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: Possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99, 85–96.

    Article  CAS  Google Scholar 

  • National Academy Press. (2001). Arsenic in drinking water: 2001 update. In R. Goyer (Ed.), Sub-committee to update the 1999 Arsenic in drinking water report. Washington, DC: National Academy Press.

    Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, K. M., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.

    Article  CAS  Google Scholar 

  • Nickson, R., Sengupta, C., Mitra, P., Dave, S. N., Banerjee, A. K., Bhattacharya, A., et al. (2007). Current knowledge on the distribution of arsenic in groundwater in five states of India. Journal of Environmental Science & Health, A, 42, 1707–1718.

    Article  CAS  Google Scholar 

  • NRC (1993) Arsenic in drinking water. Washington, DC: National Academy Press. National Research Council.

  • Schoeller, H.(1965). Hydrodynamique lansle karst (ecoulementedemmagusinement). Actes Colloques Doubronik, I, AIHS-UNESCO, 3–20.

  • Sharma, B. D., Mukopadhyay, S. S., & Sidhu, P. S. (1998). Microtpographic controls on soil formation in the Punjab region, India. Geoderma, 81, 357–368.

    Article  Google Scholar 

  • Singh, A. K. (2004). Arsenic contamination in the groundwater of North Eastern India. In Proceedings on National Seminar on Hydrology, Roorkee, India.

  • Singh, S. K., & Ghosh, A. K. (2012). Health risk assessment due to groundwater arsenic contamination: Children are at high risk. Human and Ecological Risk Assessment, 18, 751–766.

    Article  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Sracek, O., Choquette, M., Gelinas, P., Lefebvre, R., & Nicholson, R. V. (2004). Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec. Canadian Journal of Contaminant Hydrology, 69(1–2), 45–71.

    Article  CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of Amazon, the influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Tahar, M., & Ahmed, P. (2001). Geography of North-East India (2nd ed.). Guwahati: Mani Manik Prakash. 12.

    Google Scholar 

  • Uddin, A., Shamsudduha, M., Saunders, A. J., Lee, K. M., Ahmed, K. M., & Chowdhury, T. M. (2011). Mineralogical profiling of alluvial sediments from arsenic-affected Ganges–Brahmaputra floodplain in central Bangladesh. Applied Geochemistry, 26, 470–483.

    Article  CAS  Google Scholar 

  • US-EPA, IRIS. (2007). United States, Environmental Protection Agency, Integrated Risk Information System. http://www.atsdr.cdc.gov/toxprofiles/tp2-c8.pdfUS-EPA (US Environmental Protection Agency 2009). Available at https://books.google.co.in/books?id=vNVrYKh4_BQC&pg=PA30&lpg=PA30&dq=average+body+weight+in+kg+women+USEPA&source.

  • USEPA, (US Environmental Protection Agency). (1989). Available at http://www.epa.gov/oswer/riskassessment/ragsa/index.htm and http://www.epa.gov/oswer/riskassessment/humanhealthexposure.htm.

  • WHO. (1993). Guidelines for drinking-water quality (2nd ed., Vol. 1).

Download references

Acknowledgments

This work is funded by Science and Engineering Research Board (SERB), the Department of Science and Technology (DST), under the Govt. India under the Fast Track Young Scientist Scheme awarded to Dr. Manish Kumar (SR/TP/ES-32/2012). We acknowledge the meticulous remarks of the referee which made the final version possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar.

Additional information

Manish Kumar and Arbind Kumar Patel are joint first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Patel, A.K., Das, A. et al. Hydrogeochemical controls on mobilization of arsenic and associated health risk in Nagaon district of the central Brahmaputra Plain, India. Environ Geochem Health 39, 161–178 (2017). https://doi.org/10.1007/s10653-016-9816-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9816-2

Keywords

Navigation