Skip to main content

Advertisement

Log in

Correlation of cadmium and aluminum in blood samples of kidney disorder patients with drinking water and tobacco smoking: related health risk

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The combined exposure to aluminum (Al) and cadmium (Cd) causes more pronounced adverse health effects on humans. The kidneys are the main organs affected by internal exposure to Cd and Al via food and non-food items. The objective of present study was to measure the Al and Cd concentrations in cigarettes tobacco (branded and non-branded) and drinking water (domestic treated, ground and lake water) samples in southern part of Pakistan, to assess the risk due to ingestion of water and inhalation of cigarettes smoke containing high concentrations of both elements. The study population (kidney disorder and healthy) divided into two group based on consuming lake and ground water, while smoking non-branded cigarette as exposed, while drinking domestic treated water and smoking branded cigarette as non-exposed. Electrothermal atomic absorption spectrometry was used to determined Cd and Al concentrations in tobacco, drinking water and blood samples. The resulted data indicated that the levels of Al and Cd in lake and underground water were higher than the permissible limit in drinking water recommended by the World Health Organization. The biochemical parameters of exposed and referent patients, especially urinary N-acetyl-h-glucosaminidase, were used as a biomarkers of kidney disorder. Exposed kidney disorder patients have higher levels of Cd and Al than the exposed referents subjects, while difference was significant when compared to resulted data of non-exposed patients and referents (p = 0.01–0.001). The pearson correlation showed positive correlation between both toxic element concentrations in water, cigarettes versus blood samples of exposed subjects (r = 0.20–0.67 and 0.71–0.82), while lower values were observed for non-exposed subjects (r = 0.123–0.423 and 0.331–0.425), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afridi, H. I., Kazi, T. G., Kazi, N., Jamali, M. K., Arain, M. B., Jalbani, N., et al. (2008). Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes Research and Clinical Practice, 80(2), 280–288.

    Article  CAS  Google Scholar 

  • Andrée, S., Jira, W., Schwind, K.-H., Wagner, H., & Schwägele, F. (2010). Chemical safety of meat and meat products. Meat Science, 86(1), 38–48.

    Article  CAS  Google Scholar 

  • Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., Kandhro, G. A., et al. (2008). Hazardous impact of toxic metals on tobacco leaves grown in contaminated soil by ultrasonic assisted pseudo-digestion: Multivariate study. Journal of Hazardous Materials, 155(1), 216–224.

    Article  CAS  Google Scholar 

  • Azizullah, A., Khattak, M. N. K., Richter, P., & Häder, D.-P. (2011). Water pollution in Pakistan and its impact on public health—a review. Environment International, 37(2), 479–497.

    Article  CAS  Google Scholar 

  • Bagchi, S. S. D. B. M. (1997). Toxicity of trace elements in tobacco smoke. Inhalation Toxicology, 9(9), 867–890.

    Article  Google Scholar 

  • Becaria, A., Lahiri, D. K., Bondy, S. C., Chen, D., Hamadeh, A., Li, H., et al. (2006). Aluminum and copper in drinking water enhance inflammatory or oxidative events specifically in the brain. Journal of Neuroimmunology, 176(1), 16–23.

    Article  CAS  Google Scholar 

  • Bishop, N. J., Morley, R., Day, J. P., & Lucas, A. (1997). Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions. New England Journal of Medicine, 336(22), 1557–1562.

    Article  CAS  Google Scholar 

  • Brahman, K. D., Kazi, T. G., Afridi, H. I., Naseem, S., Arain, S. S., & Ullah, N. (2013). Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: A multivariate study. Water Research, 47(3), 1005–1020.

    Article  CAS  Google Scholar 

  • Buschmann, J., Berg, M., Stengel, C., Winkel, L., Sampson, M. L., Trang, P. T. K., & Viet, P. H. (2008). Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environment International, 34(6), 756–764.

    Article  CAS  Google Scholar 

  • Carpenter, D. O., Arcaro, K., & Spink, D. C. (2002). Understanding the human health effects of chemical mixtures. Environmental Health Perspectives, 110(Suppl 1), 25.

    Article  CAS  Google Scholar 

  • Coen, N., Mothersill, C., Kadhim, M., & Wright, E. (2001). Heavy metals of relevance to human health induce genomic instability. The Journal of Pathology, 195(3), 293–299.

    Article  CAS  Google Scholar 

  • Cui, Y., Zhu, Y.-G., Zhai, R., Huang, Y., Qiu, Y., & Liang, J. (2005). Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environment International, 31(6), 784–790.

    Article  CAS  Google Scholar 

  • Ebisike, K., Ayejuyo, O., Sonibare, J., Ogunkunle, O., & Ojumu, T. (2004). Pollution impacts of cigarette consumption on indoor air quality in Nigeria. Journal of Applied Sciences, 4, 623–629.

    Article  Google Scholar 

  • El-Rahman, S. S. A. (2003). Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacological Research, 47(3), 189–194.

    Article  CAS  Google Scholar 

  • Flaten, T. P. (2001). Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Research Bulletin, 55(2), 187–196.

    Article  CAS  Google Scholar 

  • Flora, S., Mittal, M., & Mehta, A. (2008). Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian Journal of Medical Research, 128(4), 501.

    CAS  Google Scholar 

  • Fowles, J., & Dybing, E. (2003). Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tobacco Control, 12(4), 424–430.

    Article  CAS  Google Scholar 

  • Hussain, A., Murtaza, G., Ghafoor, A., Basra, S. M. A., Qadir, M., & Sabir, M. (2010). Cadmium contamination of soils and crops by long term use of raw effluent, ground and canal waters in agricultural lands. Int J Agric Biol, 12, 851–856.

    CAS  Google Scholar 

  • Järup, L., & Åkesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238(3), 201–208.

    Article  CAS  Google Scholar 

  • Jeffery, E., Abreo, K., Burgess, E., Cannata, J., & Greger, J. (1996). Systemic aluminum toxicity: Effects on bone, hematopoietic tissue, and kidney. Journal of Toxicology and Environmental Health Part A, 48(6), 649–666.

    Article  CAS  Google Scholar 

  • Jin, Y. H., Clark, A. B., Slebos, R. J., Al-Refai, H., Taylor, J. A., Kunkel, T. A., et al. (2003). Cadmium is a mutagen that acts by inhibiting mismatch repair. Nature Genetics, 34(3), 326–329.

    Article  CAS  Google Scholar 

  • Johnston, H., Thomas, S., & Atterwill, C. (1993). Aluminium and iron induced metabolic changes in neuroblastoma cell lines and rat primary neural cultures. Toxicology in Vitro, 7(3), 229–233.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Arain, M. B., Baig, J. A., Jamali, M. K., Afridi, H. I., Jalbani, N., et al. (2009a). The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Science of the Total Environment, 407(3), 1019–1026.

    CAS  Google Scholar 

  • Kazi, T. G., Jalbani, N., Arain, M. B., Jamali, M. K., Afridi, H. I., Sarfraz, R. A., & Shah, A. Q. (2009b). Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. Journal of Hazardous Materials, 163(1), 302–307. doi:10.1016/j.jhazmat.2008.06.088.

    Article  CAS  Google Scholar 

  • Kazi, T., Jalbani, N., Arain, M., Jamali, M., Afridi, H., Sarfraz, R., & Shah, A. (2009c). Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. Journal of Hazardous Materials, 163(1), 302–307.

    Article  CAS  Google Scholar 

  • Khan, S., Kazi, T. G., Baig, J. A., Afridi, H. I., & Kolachi, N. F. (2011). Separation/preconcentration methods for the determination of aluminum in dialysate solution and scalp hair samples of kidney failure patients. Biological Trace Element Research, 144(1–3), 205–216.

    Article  CAS  Google Scholar 

  • Klaassen, C. D. (2001). Casarett and Doull’s Toxicology: The basic science of poisons (Vol. 1236). New York: McGraw-Hill.

    Google Scholar 

  • Layten Davis, D., & Nielsen, M. T. (1999). Tobacco: Production, chemistry and technology. Oxford: Blackwell Science Ltd.

    Google Scholar 

  • Liangos, O., Perianayagam, M. C., Vaidya, V. S., Han, W. K., Wald, R., Tighiouart, H., et al. (2007). Urinary N-acetyl-β-(d)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. Journal of the American Society of Nephrology, 18(3), 904–912.

    Article  CAS  Google Scholar 

  • Locatelli, C. (2004). Heavy metals in matrices of food interest: Sequential voltammetric determination at trace and ultratrace level of copper, lead, cadmium, zinc, arsenic, selenium, manganese and iron in meals. Electroanalysis, 16(18), 1478–1486.

    Article  CAS  Google Scholar 

  • Muhammad, S., Shah, M. T., & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98(2), 334–343.

    Article  CAS  Google Scholar 

  • Neiva, T., Benedetti, A., Tanaka, S., Santos, J., & D’amico, E. (2002). Determination of serum aluminum, platelet aggregation and lipid peroxidation in hemodialyzed patients. Brazilian Journal of Medical and Biological Research, 35(3), 345–350.

    Article  CAS  Google Scholar 

  • Panhwar, A. H., Kazi, T. G., Afridi, H. I., Abbasi, A. R., Arain, M. B., Arain, S. A., et al. (2014). Ultrasonic-assisted ionic liquid-based microextraction for preconcentration and determination of aluminum in drinking water, blood and urine samples of kidney failure patients: a multivariate study. Analytical Methods, 6(20), 8277–8283.

    CAS  Google Scholar 

  • Panhwar, A. H., Kazi, T. G., Afridi, H. I., Arain, S. A., Brahman, K. D., & Arain, M. S. (2015a). A new solid phase microextraction method using organic ligand in micropipette tip syringe system packed with modified carbon cloth for preconcentration of cadmium in drinking water and blood samples of kidney failure patients. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 296–302.

  • Panhwar, A. H., Kazi, T. G., Afridi, H. I., Arain, S. A., Arain, M. S., Brahman, K. D., et al. (2015b). Comparative evaluation of essential and toxic elements in the blood of kidney failure patients and healthy referents. Environmental Monitoring and Assessment, 187(2), 1–11.

    Article  CAS  Google Scholar 

  • Reddy, D., & Gunasekar, A. (2013). Chronic kidney disease in two coastal districts of Andhra Pradesh, India: Role of drinking water. Environmental Geochemistry and Health, 35(4), 439–454.

    Article  CAS  Google Scholar 

  • Sargazi, M., Shenkin, A., & Roberts, N. B. (2006). Aluminium-induced injury to kidney proximal tubular cells: Effects on markers of oxidative damage. Journal of Trace Elements in Medicine and Biology, 19(4), 267–273.

    Article  CAS  Google Scholar 

  • Satarug, S., Garrett, S. H., Sens, M. A., & Sens, D. A. (2011). Cadmium, environmental exposure, and health outcomes. Ciência & Saúde Coletiva, 16(5), 2587–2602.

    Article  Google Scholar 

  • Satarug, S., Nishijo, M., Ujjin, P., Vanavanitkun, Y., & Moore, M. R. (2005). Cadmium-induced nephropathy in the development of high blood pressure. Toxicology Letters, 157(1), 57–68.

    Article  CAS  Google Scholar 

  • Savory, J., Exley, C., Forbes, W. F., Huang, Y., Joshi, J. G., Kruck, T., et al. (1996). Can the controversy of the role of aluminum in Alzheimer’s disease be resolved? What are the suggested approaches to this controversy and methodological issues to be considered? Journal of Toxicology and Environmental Health Part A, 48(6), 615–636.

    Article  CAS  Google Scholar 

  • Shaikh, A., Negi, B., & Sadasivan, S. (2002). Characterization of Indian cigarette tobacco and its smoke aerosol by nuclear and allied techniques. Journal of Radioanalytical and Nuclear Chemistry, 253(2), 231–234.

    Article  CAS  Google Scholar 

  • Shrivas, K., & Patel, D. K. (2010). Separation and preconcentration of trace level of lead in one drop of blood sample by using graphite furnace atomic absorption spectrometry. Journal of Hazardous Materials, 176(1), 414–417.

    Article  CAS  Google Scholar 

  • Sińczuk-Walczak, H., Matczak, W., Raźniewska, G., & Szymczak, M. (2004). Neurologic and neurophysiologic examinations of workers occupationally exposed to aluminium. Medycyna Pracy, 56(1), 9–17.

    Google Scholar 

  • Sommar, J. N., Svensson, M. K., Björ, B. M., Elmståhl, S. I., Hallmans, G., Lundh, T., et al. (2013). End-stage renal disease and low level exposure to lead, cadmium and mercury: A population-based, prospective nested case-referent study in Sweden. Environmental health, 12(1), 9.

    Article  CAS  Google Scholar 

  • Torrence, K., McDaniel, R., Self, D., & Chang, M. (2002). Slurry sampling for the determination of arsenic, cadmium, and lead in mainstream cigarette smoke condensate by graphite furnace–atomic absorption spectrometry and inductively coupled plasma–mass spectrometry. Analytical and Bioanalytical Chemistry, 372(5–6), 723–731.

    Article  CAS  Google Scholar 

  • Venturini-Soriano, M., & Berthon, G. (1998). Aluminum speciation studies in biological fluids. Part 4. A new investigation of aluminum–succinate complex formation under physiological conditions, and possible implications for aluminum metabolism and toxicity. Journal of Inorganic Biochemistry, 71(3), 135–145.

    Article  CAS  Google Scholar 

  • Wang, J. P., Wang, S. L., Lin, Q., Zhang, L., Huang, D., & Ng, J. C. (2009). Association of arsenic and kidney dysfunction in people with diabetes and validation of its effects in rats. Environment International, 35(3), 507–511.

    Article  CAS  Google Scholar 

  • Wang, F. Y., Wang, H., & Ma, J. W. (2010). Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. Journal of Hazardous Materials, 177(1), 300–306.

    Article  CAS  Google Scholar 

  • World Health Organization. (2004). Guidelines for drinking-water quality: Recommendations (Vol. 1). Geneva: World Health Organization.

    Google Scholar 

  • Wu, D., Landsberger, S., & Larson, S. M. (1995). Evaluation of elemental cadmium as a marker for environmental tobacco smoke. Environmental Science and Technology, 29(9), 2311–2316.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the National Center of Excellence in Analytical Chemistry university of Sindh Pakistan for sponsoring this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Haleem Panhwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panhwar, A.H., Kazi, T.G., Afridi, H.I. et al. Correlation of cadmium and aluminum in blood samples of kidney disorder patients with drinking water and tobacco smoking: related health risk. Environ Geochem Health 38, 265–274 (2016). https://doi.org/10.1007/s10653-015-9715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9715-y

Keywords

Navigation