Skip to main content

Advertisement

Log in

Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80 % of total As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in the terrestrial environment. New York: Springer.

    Book  Google Scholar 

  • Alvarenga, P., Palma, P., Goncalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., et al. (2008). Evaluation of tests to assess the quality of mine-contaminated soils. Environmental Geochemistry and Health, 30, 95–99.

    Article  CAS  Google Scholar 

  • Basu, A. (2006). Assessment of arsenic mobility using sequential extraction and microscopic methods (p. 77). Blacksburg (USA): Department of Geosciences. Virginia State University.

    Google Scholar 

  • Bird, G., Brewera, P. A., Macklina, M. G., Serbanb, M., Balteanub, D., & Drigab, B. (2005). Heavy metal contamination in the Aries river catchment, western Romania: Implications for development of the Rosia Montana gold deposit. Journal of Geochemical Exploration, 86, 26–48.

    Article  CAS  Google Scholar 

  • Bordas, F., & Bourg, A. (2001). Effect of solid/liquid ratio on the remobilization of Cu, Pb, Cd and Zn from polluted river sediment. Water, Air, and Soil pollution, 128, 391–400.

    Article  CAS  Google Scholar 

  • Calderon, V., Ryan, A. & Shrader, D. (2007). Analysis of environmental samples by ICP-OES following US EPA guidelines. Atomic Spectroscopy, March, 17–18.

  • Cances, B., Juillot, F., Morin, G., Laperche, V., Alvarez, L., Proux, O., et al. (2005). XAS evidence of As(V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant. Environmental Science and Technology, 39, 9398–9405.

    Article  CAS  Google Scholar 

  • Charlesworth, S., De Miguel, E., & Ordóñez, A. (2011). A review of the distribution of particulate trace elements in urban terrestrial environments and its application to consideration of risk. Environmental Geochemistry and Health, 33(2), 103–123.

    Article  CAS  Google Scholar 

  • Fernández-Martínez, R., Loredo, J., Ordóñez, A., & Rucandio, M. I. (2006). Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Environmental Pollution, 142, 217–226.

    Article  Google Scholar 

  • Fernández-Martínez, R., & Rucandio, I. (2013). A simplified method for determination of organic mercury in soils. Analytical Methods, 5, 4131–4137.

    Article  Google Scholar 

  • Fernández-Martínez, R., Rucandio, M. I., Ordoñez, A. & Loredo, J. (Eds.). (2005). Geoquímica y distribución del mercurio en suelos de una antigua explotación de cinabrio en el Terronal, Mieres (Asturias) (Colección Documentos CIEMAT). ISBN: 84-7834-509-4 Madrid: CIEMAT.

  • Fujitake, N., Kusumoto, A., Tsukamoto, M., Kawahigashi, M., Suzuki, T., & Otsuka, H. (1998). Properties of soil humic substances in fractions obtained by sequential extraction with pyrophosphate solutions at different pHs I. Yield and particle size distribution. Soil Science and Plant Nutrition, 44, 253–260.

    Article  Google Scholar 

  • García-Loygorry, A., Ortuño, G., Caride, E., Gervilla, M., Greber, C. H. & Feys, R. (1971). El Carbonífero de la Cuenca Central Asturiana (Vol. 3, Trabajos de Geología): Universidad de Oviedo.

  • Gleyzes, C., Tellier, S., Sabrier, R., & Astruc, M. (2001). Arsenic characterisation in industrial soils by chemical extractions. Environmental Technology, 22, 27–38.

    Article  CAS  Google Scholar 

  • Gray, J. E., Crock, J. G., & Fey, D. L. (2002). Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA. Applied Geochemistry, 17, 1069–1079.

    Article  CAS  Google Scholar 

  • Gruebel, K. A., Davis, J. A., & Leckie, J. O. (1988). The feasibility of using sequential extraction techniques for arsenic and selenium in soils and sediments. Soil Science Society of America Journal, 52, 390–397.

    Article  CAS  Google Scholar 

  • Hudson-Edwards, K. A., Houghton, S. L., & Osborn, A. (2004). Extraction and analysis of arsenic in soils and sediments. Trends in Analytical Chemistry, 23, 745–752.

    Article  CAS  Google Scholar 

  • Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C. F., & Hemond, H. F. (2001). Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science and Technology, 35, 2778–2784.

    Article  CAS  Google Scholar 

  • Kim, C. S., Bloom, N. S., Rytuba, J. J., & Brown, G. E. (2003a). Mercury speciation by X-ray absorption fine structure spectroscopy and sequential chemical extractions: A comparison of speciation methods. Environmental Science and Technology, 37, 5102–5108.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Davis, A. P., & Kim, K. W. (2003b). Stabilization of available arsenic in highly contaminated mine tailings using iron. Environmental Science and Technology, 37, 189–195.

    Article  CAS  Google Scholar 

  • Kot, F. S., & Matyushkina, L. A. (2002). Distribution of mercury in chemical fractions of contaminated urban soils of Middle Amur, Russia. Journal of Environmental Monitoring, 4, 803–808.

    Article  CAS  Google Scholar 

  • Larios, R., Fernandez-Martinez, R., Alvarez, R., & Rucandio, I. (2012a). Arsenic pollution and fractionation in sediments and mine waste samples from different mine sites. Science of the Total Environment, 431, 426–435.

    Article  CAS  Google Scholar 

  • Larios, R., Fernandez-Martinez, R., LeHecho, I., & Rucandio, I. (2012b). A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas. Science of the Total Environment, 414, 600–607.

    Article  CAS  Google Scholar 

  • Larios, R., Fernández-Martínez, R., & Rucandio, I. (2013a). Assesment of a sequential extraction procedure for arsenic partitioning and application to samples from different pollution sources. Analytical Methods, 5, 4096–4104.

    Article  CAS  Google Scholar 

  • Larios, R., Fernandez-Martinez, R., Silva, V., Loredo, J., & Rucandio, I. (2012c). Arsenic contamination and speciation in surrounding waters of three old cinnabar mines. Journal of Environmental Monitoring, 14, 531–542.

    Article  CAS  Google Scholar 

  • Larios, R., Fernández-Martínez, R., Silva, V., & Rucandio, I. (2013b). Chemical availability of arsenic and heavy metals in sediments from abandoned cinnabar mine tailings. Environmental Earth Sciences, 68, 535–546.

    Article  CAS  Google Scholar 

  • Lombi, E., Sletten, R. S., & Wenzel, W. W. (2000). Sequentially extracted arsenic from different size fractions of contaminated soils. Water, Air, and Soil pollution, 124, 319–332.

    Article  CAS  Google Scholar 

  • Loredo, J., Álvarez, R., & Ordóñez, A. (2005). Release of toxic metals and metalloids from Los Rueldos mercury mine (Asturias, Spain). Science of the Total Environment, 340, 247–260.

    Article  CAS  Google Scholar 

  • Loredo, J., Luque, C., & Iglesias, J. G. (1988). Conditions of formation of mercury deposits from the Cantabrian zone (Spain). Bulletin De Mineralogie, 111, 393–400.

    CAS  Google Scholar 

  • Loredo, J., Ordóñez, A., & Álvarez, R. (2006). Environmental impact of toxic metals and metalloids from the Muñón Cimero mercury-mining area (Asturias, Spain). Journal of Hazardous Materials, 136, 455–467.

    Article  CAS  Google Scholar 

  • Loredo, J., Ordóñez, A., Baldo, C., & García-Iglesias, J. (2003a). Arsenic mobilization from waste piles of the El Terronal mine, Asturias, Spain. Geochemistry: Exploration Environment, Analysis, 3, 229–237.

    CAS  Google Scholar 

  • Loredo, J., Ordonez, A., Charlesworth, S., & De Miguel, E. (2003b). Influence of industry on the geochemical urban environment of Mieres (Spain) and associated health risk. Environmental Geochemistry and Health, 25, 307–323.

    Article  CAS  Google Scholar 

  • Loredo, J., Petit-Domínguez, M. D., Ordoñez, A., Galán, M. P., Fernández-Martínez, R., Alvarez, R., et al. (2010). Surface water monitoring in the mercury mining district of Asturias (Spain). Journal of Hazardous Materials, 176, 323–332.

    Article  CAS  Google Scholar 

  • Luque, C. (1985). Las mineralizaciones de mercurio de la cordillera cantábrica. Thesis Dissertation. University of Oviedo, Oviedo.

  • Luque, C. & Gutiérrez-Claverol, M. (2006). La minería de mercurio en Asturias. Rasgos históricos. Oviedo: Eujoa, p. 554.

  • Martin, T., Brockhoff, C., Creed, J. & Group, E. M. W. (1994). Method 200.7: Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. EPA.

  • Masa, B., Pulisova, P., Bezdicka, P., Michalkova, E., & Subrt, J. (2012). Ochre precipitates and acid mine drainage in a mine environment. Ceramics-Silikaty, 56, 9–14.

    CAS  Google Scholar 

  • Matera, V., Le Hecho, I., Laboudigue, A., Thomas, P., Tellier, S., & Astruc, M. (2003). A methodological approach for the identification of arsenic bearing phases in polluted soils. Environmental Pollution, 126, 51–64.

    Article  CAS  Google Scholar 

  • McLaren, R. G., Naidu, R., Smith, J., & Tiller, K. G. (1998). Fractionation and distribution of arsenic in soils contaminated by cattle dip. Journal of Environmental Quality, 27, 348–354.

    Article  CAS  Google Scholar 

  • Morin, G., & Calas, G. (2006). Arsenic in soils, mine tailings, and former industrial sites. Elements, 2, 97–101.

    Article  CAS  Google Scholar 

  • Mucci, A., Richard, L. F., Lucotte, M., & Guignard, C. (2000). The differential geochemical behaviour of arsenic and phosphorus in the water column and sediments of the Saguenay Fjord estuary, Canada. Aquatic Geochemistry, 6, 293–324.

    Article  CAS  Google Scholar 

  • Muhammad, D. (2003). Fractionation of arsenic in Port Kembla Harbour sediments. Thesis Dissertation. Phylosophical Doctor, University of Wollongong, Wollongong (Australia).

  • Müller, K., Daus, B., Morgenstern, P., & Wennrich, R. (2007). Mobilization of antimony and arsenic in soil and sediment samples—evaluation of different leaching procedures. Water, Air, and Soil pollution, 183, 427–436.

    Article  Google Scholar 

  • Ordóñez, A., Álvarez, R., & Loredo, J. (2013). Asturian mercury mining district (Spain) and the environment: A review. Environmental Science and Pollution Research. doi:10.1007/s11356-013-1663-4.

    Google Scholar 

  • Ordóñez, A., Andrés, C., Álvarez, R., & Jardón, S. (2010). Aprovechamiento de las aguas subterráneas como recurso hídrico y energético. Seguridad y Medioambiente, 118, 46–60.

    Google Scholar 

  • Paul, C. J., Ford, R. G., & Wilkin, R. T. (2009). Assessing the selectivity of extractant solutions for recovering labile arsenic associated with iron (hydr)oxides and sulfides in sediments. Geoderma, 152, 137–144.

    Article  CAS  Google Scholar 

  • Quevauviller, P. (1998). Operationally defined extraction procedures for soil and sediment analysis I. Standardization. Trends in Analytical Chemistry, 17, 289–298.

    Article  CAS  Google Scholar 

  • Sharma, P., & Kappler, A. (2011). Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate. Journal of Contaminant Hydrology, 126, 216–225.

    Article  CAS  Google Scholar 

  • Silva, V. (2011). Incidencia de la minería abandonada de mercurio sobre las aguas y sedimentos de la cuenca del río Caudal: valoración y propuestas de actuación. Thesis Dissertation, Universidad de Oviedo. Oviedo. Spain.

  • Sutherland, R. A., Tack, F. M. G., & Ziegler, A. D. (2012). Road-deposited sediments in an urban environment: A first look at sequentially extracted element loads in grain size fractions. Ceramics-Silikaty, 225, 54–62.

    Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436, 309–323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Rucandio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, V., Loredo, J., Fernández-Martínez, R. et al. Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts. Environ Geochem Health 36, 831–843 (2014). https://doi.org/10.1007/s10653-014-9602-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9602-y

Keywords

Navigation