Skip to main content
Log in

Numerical simulation of sand dune erosion

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Erosion of sand or other granular material is a subject of utmost importance in several fields of practical interest, including industrial processes or environmental issues. Resulting from intricate interaction between the incident flow field and localized body forces responsible for the granular material cohesion, erosion is a particularly complex phenomenon. The present work addresses this problem, proposing a numerical method to compute the time evolution of a sand dune subjected to aeolian erosion, along with the associated entrainment and deposition fluxes. Turbulent fluid flow is computed through a three-dimensional Navier-Stokes solver based on a generalized coordinate system. A Lagrangian approach is adopted for tracking the trajectories of particles entrained in the saltation regime, thus allowing prediction of the corresponding deposition locations. Different models for saltation fluxes are tested, along with several formulations for the creeping-to-saltation flux ratio, creeping threshold and creeping distance. Comparison with results from wind tunnel experiments is very encouraging, stressing the relative importance of creeping in the erosion process for the presently studied conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Crowe CT, Sommerfeld M, Tsuji Y (1998) Multiphase flows with droplets and particles. CRC Press LLC, London

    Google Scholar 

  2. Fan L-S, Zhu C (1998) Principles of gas-solid flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Shao Y (2008) Physics and modelling of wind erosion, 2nd edn. Springer, Montreal

    Google Scholar 

  4. Pye K, Tsoar H (2009) Aeolian sand and sand dunes. Springer, Berlin

    Google Scholar 

  5. Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, London (reprinted, (1954) 1960; 2005, by Dover. Mineola, NY)

  6. Werner BT (1995) Eolian dunes: computer simulations and attractor interpretation. Geology 23:1107–1110

    Article  Google Scholar 

  7. Narteau C, Zhang D, Rozier O, Claudin P (2009) Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms. J Geophys Res 114(F03006):1–18

    Google Scholar 

  8. Barchyn TE, Hugenholtz CH (2011) A new tool for modeling dune field evolution based on an accessible, GUI version of the Werner dune model. Geomorphology 138:415–419

    Article  Google Scholar 

  9. Eastwood E, Nield J, Baas A, Kocurek G (2011) Modelling controls on aeolian dune-field pattern evolution. Sedimentology 58:1391–1406

    Article  Google Scholar 

  10. Stam JMT (1997) On the modelling of two-dimensional aeolian dunes. Sedimentology 44:127–141

    Article  Google Scholar 

  11. Kroy K, Sauermann G, Herrmann H (2002) Minimal model for sand dunes. Phys Rev Lett 88(5):3–6

    Article  Google Scholar 

  12. Pischiutta M, Formaggia L, Nobile F (2011) Mathematical modelling for the evolution of aeolian dunes formed by a mixture of sands: entrainment-deposition formulation. Commun Appl Ind Math 2:1–21

    Google Scholar 

  13. Exner FM (1925) Über die wechselwirkung zwischen wasser und geschiebe in Flüssen (in German). Sitz Acad Wiss Wien Math Naturwiss Abt. 2a 134:165–203

    Google Scholar 

  14. Sauermann G, Kroy K, Herrmann H (2001) Continuum saltation model for sand dunes. Phys Rev E 64(3):1–10

    Article  Google Scholar 

  15. Jackson PS, Hunt JCR (1975) Turbulent wind flow over a low hill. Q J R Meteorolog Soc 101:929–955

    Article  Google Scholar 

  16. Kawamura R (1951) Study of sand movement by wind. Univ. Tokyo. Rep Inst Sci Technol 5:95–112 (in Japanese)

    Google Scholar 

  17. Lettau K, Lettau HH (1978) Experimental and micrometeorological field studies of dune migration. In: Lettau HH, Lettau K (eds) Exploring the world’s driest climates. Institute of Environmental Science Report 101, Center for Climatic Research, University of Wisconsin, Madison, WI, USA, pp 110–147

  18. Wang Z, Zheng X-J (2004) Theoretical prediction of creep flux in aeolian sand transport. Powder Technol 139:123–128

    Article  Google Scholar 

  19. Ferreira AD, Fino MRM (2012) A wind tunnel study of wind erosion and profile reshaping of transverse sand piles in tandem. Geomorphology 139(140):230–241

    Article  Google Scholar 

  20. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Washington DC

    Google Scholar 

  21. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Meth Appl Mech Eng 3:269–289

    Article  Google Scholar 

  22. Cebeci T, Bradshaw P (1997) Momentum transfer in boundary layers. Hemisphere Publishing Corporation, New York

    Google Scholar 

  23. Van Doormaal JP, Raithby GD (1984) Enhancements of the simple method for predicting incompressible fluid flows. Numer Heat Transfer 7:147–163

    Google Scholar 

  24. Lopes AMG, Sousa ACM, Viegas DX (1995) Numerical simulation of turbulent flow and fire propagation in complex terrain. Numer Heat Transfer, Part A 27:229–253

    Article  Google Scholar 

  25. Anderson RS, Haff PK (1988) Simulation of eolian saltation. Science 241:820–823

    Article  Google Scholar 

  26. Shao Y, Li A (199) Numerical modelling of saltation in the atmospheric surface layer. Bound-Lay Meteorol 91:199–225

    Google Scholar 

  27. Oliveira LA, Costa VAF, Baliga BR (2008) Numerical model for the prediction of dilute three-dimensional, turbulent fluid-particle flows, using a Lagrangian approach for particle tracking and a CVFEM for the carrier phase. Int J Numer Meth Fluids 58:473–491

    Article  Google Scholar 

  28. Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–889

    Article  Google Scholar 

  29. Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York

    Google Scholar 

  30. Oliveira LA, Costa VAF, Baliga BR (2002) A Lagrangian-Eulerian model of particle dispersion in a turbulent plane mixing layer. Int J Numer Meth Fluids 40:639–653

    Article  Google Scholar 

  31. Gosman AD, Ionnides E (1981) Aspects of computer simulation of liquid fuelled combustors. AIAA Paper No 81–0323

  32. Dong Z, Liu X, Wang H, Wang X (2003) Aeolian sand transport: a wind tunnel model. Sediment Geol 161:71–83

    Article  Google Scholar 

  33. Bagnold RA (1956) The flow of cohesionless grains in fluids. Philos Trans R Soc Lond Ser A 249:235–297

    Article  Google Scholar 

  34. Ferreira AD, Farimani A, Sousa ACM (2011) Numerical and experimental analysis of wind erosion on a sinusoidal pile. Environ Fluid Mech 11:167–181

    Article  Google Scholar 

  35. Gillete DA, Passi R (1988) Modeling dust emission caused by wind erosion. J Geophys Res 93(D11):14233–14242

    Article  Google Scholar 

  36. Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res 100(D8):16415–16430

    Article  Google Scholar 

  37. Shao Y (2004) Simplification of a dust emission scheme and comparison with data. J Geophys Res 109(D10):1–6

    Article  Google Scholar 

  38. Andreotti B, Claudin P, Douady S (2002) Selection of dune shapes and velocities Part 1: dynamics of sand, wind and barchans. Eur Phys J B 28:321–339

    Article  Google Scholar 

  39. Almeida MP, Parteli EJR, Andrade JS, Herrmann HJ (2008) Giant saltation on Mars. Proc Natl Acad Sci USA 105(17):6222–6226

    Article  Google Scholar 

  40. Lancaster N, Nickling WG, Neuman CKM, Wyatt VE (1996) Sediment flux and airflow on the stoss slope of a barchan dune. Geomorphology 17:55–62

    Article  Google Scholar 

  41. Durán O, Herrmann H (2006) Modelling of saturated sand flux. J Stat Mech: Theory Exp 7:P07011–P07011

    Article  Google Scholar 

  42. Iversen JD, Rasmussen KR (1999) The effect of wind speed and bed slope on sand transport. Sedimentology 46:723–731

    Article  Google Scholar 

  43. Nalpanis P, Hunt JCR, Barrett CF (1993) Saltating particles over flat beds. J Fluid Mech 251:661–685

    Article  Google Scholar 

  44. Shao Y (2007) Physics and Modelling of Wind Erosion, 2nd edn. Springer, Berlin

    Google Scholar 

  45. Sherman DJ, Li B, Ellis JE, Farrell EJ, Maia LP, Granja H (2012) Recalibrating aeolian sand transport models. Earth Surf Process Landf. doi:10.1002/esp.3310

  46. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. G. Lopes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, A.M.G., Oliveira, L.A., Ferreira, A.D. et al. Numerical simulation of sand dune erosion. Environ Fluid Mech 13, 145–168 (2013). https://doi.org/10.1007/s10652-012-9263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-012-9263-2

Keywords

Navigation