Skip to main content

Advertisement

Log in

Monitoring the transport of biomass burning emissions in South America

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The atmospheric transport of biomass burning emissions in the South American and African continents is being monitored annually using a numerical simulation of air mass motions; we use a tracer transport capability developed within RAMS (Regional Atmospheric Modeling System) coupled to an emission model. Mass conservation equations are solved for carbon monoxide (CO) and particulate material (PM2.5). Source emissions of trace gases and particles associated with biomass burning activities in tropical forest, savanna and pasture have been parameterized and introduced into the model. The sources are distributed spatially and temporally and assimilated daily using the biomass burning locations detected by remote sensing. Advection effects (at grid scale) and turbulent transport (at sub-grid scale) are provided by the RAMS parameterizations. A sub-grid transport parameterization associated with moist deep and shallow convection, not explicitly resolved by the model due to its low spatial resolution, has also been introduced. Sinks associated with the process of wet and dry removal of aerosol particles and chemical transformation of gases are parameterized and introduced in the mass conservation equation. An operational system has been implemented which produces daily 48-h numerical simulations (including 24-h forecasts) of CO and PM2.5, in addition to traditional meteorological fields. The good prediction skills of the model are demonstrated by comparisons with time series of PM2.5 measured at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreae, M.: 1991, Biomass burning: its history, use and distribution and its impact on environmental quality and global climate. In: J.S. Levine (ed.), Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, pp. 3–21, MIT Press, Cambridge, Mass.

    Google Scholar 

  2. Kaufman, Y.: 1995, Remote sensing of direct and indirect aerosol forcing. In: R.J. Charlson and J. Heintzenberg (eds.), Aerosol Forcing of Climate, pp. 297–332, John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  3. Scholes, R., Ward, D. and Justice, C.: 1996, Emissions of trace gases and aerosols particles due to vegetation burning in southern hemisphere Africa, J. Geophys. Res. 101(D19), 23667–23676.

    Google Scholar 

  4. Duncan, B., Martin, R., Staudt, A., Yevich, R. and Logan, J.: 2003, Interannual and seasonal variability of biomass burning emissions constrained by satellite observations, J. Geophys. Res. 108(D2), 4100.

    Google Scholar 

  5. Prins, E., Feltz, J., Menzel, W. and Ward, D.: 1998, An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America, J. Geophys. Res. 103(D24), 31821–31835.

    Google Scholar 

  6. Artaxo P., Gerab, F., Yamasoe, M. and Martins, J.: 1994, Fine mode aerosol composition in three long-term atmospheric monitoring sampling stations in the Amazon basin, J. Geophys. Res. 99, 22857–22867.

    Google Scholar 

  7. Artaxo P., Fernandes, E., Martins, J., Yamasoe, M., Hobbs, P., Maenhaut, W., Longo K. and Castanho, A.: 1998, Large-scale aerosol source apportionment in Amazonia, J. Geophys. Res. 103, 31837–31847.

    Google Scholar 

  8. Echalar, F., Artaxo, P., Martins, J., Yamasoe M. and Gerab, F.: 1998, Long-term monitoring of atmospheric aerosols in the Amazon basin: Source identification and apportionment, J. Geophys. Res. 103, 31849–31864.

    CAS  Google Scholar 

  9. Reid, J., Hobbs, P., Ferek, R., Blake, D., Martins, J., Dunlap, M. and Liousse, C.: 1998, Physical, chemical and optical properties of regional hazes dominated by smoke in Brazil, J. Geophys. Res. 103, 32059–32080.

    CAS  Google Scholar 

  10. Jacobson, M.: 2001, Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols, J. Geophys. Res. 106(D2), 1551–1568.

    CAS  Google Scholar 

  11. Sato, M., Hansen, J., Koch, D., Lacis, A., Ruedy, R., Dubovik, O., Holben, B., Chin, M. and Novakov, T..: 2003, Global atmospheric black carbon inferred from AERONET, Proc. Natl. Acad. Sci. USA, 100, 6319–6324.

    CAS  Google Scholar 

  12. Andreae, M.: 2001, The dark side of aerosols, Nature, 409, 671–672.

    CAS  Google Scholar 

  13. Cotton, W. and Pielke, R.: 1996, Human Impacts on Weather and Climate, Cambridge University Press, New York.

    Google Scholar 

  14. Rosenfeld, D.: 1999, TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Geophys. Res. Lett. 26, 3101.

    Google Scholar 

  15. Grell, G., Emeis, S., Stockwell, W., Schoenemeyer, T., Forkel, R., Michalakes, J., Knoche, R. and Seidl, W.: 2000, Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign, Atmos. Env. 34, 1435–1453.

    CAS  Google Scholar 

  16. Chatfield, R., Vastano, J., Singh, H. and Sachse, G.: 1996, A general model of how fire emissions and chemistry produce African/oceanic plumes (O3, CO, PAN, smoke), J. Geophys. Res. 101(D19), 24279–24306.

    CAS  Google Scholar 

  17. Chatfield, R., Guo, Z., Sachse, G., Blake, D. and Blake, N.: 2002, The subtropical global plume in the Pacific Exploratory Mission-Tropics A (PEM-Tropics A), PEM-Tropics B and the Global Atmospheric Sampling Program (GASP): How tropical emissions affect the remote Pacific. J. Geophys. Res., 107(D16), 4278.

    Google Scholar 

  18. Chin, M., Rood, R., Lin, S.-J., Muller, J.-F. and Thompson, A.: 2000, Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties, J. Geophys. Res. 105(D20), 24671–24687.

    CAS  Google Scholar 

  19. Brasseur, G., Hauglustaine, D., Walters, S., Rasch, P., Müller, J.-F., Granier, C. and Tie, X.: 1998, MOZART, a global chemical transport model for ozone and related chemical tracers, 1: Model description, J. Geophys. Res. 103(D21), 28265–28289.

    CAS  Google Scholar 

  20. Horowitz, L., Walters, S., Mauzerall, D., Emmons, L., Rasch, P., Granier, C., Tie, X., Lamarque, J.-F., Schultz, M. and Brasseur, G.: 2003, A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res. 108(D24), 4784.

    Google Scholar 

  21. Walko, R., Band, L., Baron J., Kittel, F., Lammers, R., Lee, T., Ojima, D., Pielke, R., Taylor, C., Tague, C., Tremback, C. and Vidale, P.: 2000, Coupled atmosphere-biophysics-hydrology models for environmental modeling, J. Appl. Meteorol. 39, 931–944.

    Google Scholar 

  22. Lobert, J.M. and Warnatz, J.: 1993, Emissions from the combustion process in vegetation. In: P.J. Crutzen and J. Goldamner (eds.), Fire in the Environment: Its Ecological, Atmospheric and Climatic Importance, pp. 15–38, John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  23. Ward, E., Susott, R., Kaufman, J., Babbit, R., Cummings, D., Dias, B., Holben, B., Kaufman, Y., Rasmussen, R. and Setzer, A.: 1992, Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res. 97(D13), 14601–14619.

    Google Scholar 

  24. Ferek, J., Reid, J. and Hobbs, P.: 1996, Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. In: V. Kirchhoff (ed.), Smoke/Sulfate, Clouds and Radiation — Brazil (SCAR-B) Proceedings, pp. 35–39, Transtec Editorial, Fortaleza.

    Google Scholar 

  25. Andreae, M. and Merlet, P.: 2001, Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15, 955–966.

    CAS  Google Scholar 

  26. Pereira, M.: 1988, Detecção, Monitoramento e Análises de alguns Impactos Ambientais de Queimadas na Amazônia Usando Dados de Avião e dos Satélites NOAA e LANDSAT. Dissertaç ão de mestrado, INPE-4503-TDL/326, 268 p., Instituto Nacional de Pesquisas Espaciais (in Portuguese).

  27. Setzer, A. and Pereira, M.: 1991, Amazonia biomass burnings in 1987 and an estimate of their tropospheric emissions, Ambio, 20, 19–22.

    Google Scholar 

  28. Prins, E. and Menzel, W.: 1992, Geostationary satellite detection of biomass burning in South America, Int. J. Remote Sens., 13, 2783–2799.

    Google Scholar 

  29. Matson, M. and Dozier, J.: 1981, Identification of sub-resolution high temperature sources using a thermal IR sensor, Photogram. Eng. Remote Sens., 47, 1311–1318.

    Google Scholar 

  30. Prins, E., Menzel, W. and Ward, D.: 1996, GOES-8 ABBA diurnal fire monitoring during SCAR-B. In: V. Kirchhoff (ed.), Smoke/Sulfate, Clouds and Radiation — Brazil (SCAR-B) Proceedings, pp. 153–157, Transtec Editorial, Fortaleza.

    Google Scholar 

  31. Chatfield, R. and Crutzen, P.: 1984, Sulfur dioxide in remote oceanic air: Cloud transport of reactive precursors, J. Geophys. Res., 89(D5), 7111–7132.

    CAS  Google Scholar 

  32. Pickering, K., Dickerson, R., Huffman, G., Boatman. J. and Schanot, A.: 1988, Trace gas transport in the vicinity of frontal convective clouds, J. Geophys. Res. 93(D1), 759–773.

    CAS  Google Scholar 

  33. Chatfield, R. and Delany, A.: 1990, Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3, J. Geophys. Res. 95(D12), 18473–18488.

    Article  CAS  Google Scholar 

  34. Thompson, A., Pickering, K., Dickerson, R., Ellis, Jr. W., Jacob, D., Scala, J., Tao, W.-K., McNamara, D. and Simpson, J.: 1994, Convective transport over the Central United States and its role in regional CO and ozone budgets, J. Geophys. Res. 99(D09), 18703–18711.

    Google Scholar 

  35. Freitas, S., Silva Dias, M., Silva Dias, P., Longo, K., Artaxo, P., Andreae, M. and Fischer, H.: 2000, A convective kinematic trajectory technique for low-resolution atmospheric models, J. Geophys. Res. 105(D19), 24375–24386.

    CAS  Google Scholar 

  36. Longo, K., Thompson, A., Kirchhoff, V., Remer, L., Freitas S., Silva Dias, M., Artaxo, P., Hart, W., Spinhirne, J. and Yamasoe, M.: 1999, Correlation between smoke and tropospheric ozone concentration in Cuiabá during Smoke, Clouds and Radiation-Brazil (SCAR-B), J. Geophys. Res. 104(D10), 12113.

    CAS  Google Scholar 

  37. Freitas, S., Silva Dias, M. and Silva Dias, P.: 2000, Modeling the convective transport of trace gases by deep and moist convection, Hybrid Meth. Eng., 2(3), 317–330.

    Google Scholar 

  38. Galanter, M., Levy, II H. and Carmichael, G.: 2000, Impacts of biomass burning on tropospheric CO, NOx, and O3, J. Geophys. Res. 105(D5), 6633–6653.

    CAS  Google Scholar 

  39. Andreae, M., Artaxo, P., Fischer, H., Freitas, S., Grégoire, J.-M., Hansel, A., Hoor, P., Kormann, R., Krejci, R., Lange, L., Lelieveld, J., Lindinger, W., Longo, K., Peters, W., Reus, M., Scheeren, B., Silva Dias, M. A. F., Ström, J., Velthoven, P. F. J. and Williams, J.: 2001, Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region, Geophys. Res. Lett. 28(6), 951.

    CAS  Google Scholar 

  40. Tripoli, G. and Cotton, W.: 1982, The Colorado State University three-dimensional cloud/mesoscale model. Part I: General theoretical framework and sensitivity experiments, J. Res. Atmos. 16, 185–219.

    Google Scholar 

  41. Tremback, C.: 1990, Numerical Simulation of a Mesoscale Convective Complex: Model Development and Numerical Results. Ph.D. Dissertation, Atmos. Sci. Paper No. 465, Colorado State University, Dept. of Atmospheric Science, Fort Collins, CO.

    Google Scholar 

  42. Grell, G.: 1993, Prognostic evaluation of assumptions used by cumulus parameterization, Mon. Wea. Rev. 121 764–787.

    Google Scholar 

  43. Grell, G. and Devenyi, D.: 2002, A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett. 29, 1693.

    Google Scholar 

  44. Belward, A.: 1996, The IGBP-DIS global 1 km land cover data set (DISCover)-proposal and implementation plans, IGBP-DIS Working Paper No. 13, Toulouse, France.

  45. Seinfeld, J. and Pandis, S.: 1998, Atmospheric Chemistry and Physics, John Wiley & Sons Inc., New York.

    Google Scholar 

  46. Mauzerall, D., Logan, J., Jacob, D., Anderson, B., Blake, D., Bradshaw, J., Heikes, B., Sachse, G., Singh, H. and Talbot, B.: 1998, Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic, J. Geophys. Res. 103(D7), 8401–8423.

    CAS  Google Scholar 

  47. Berge, E.: 1993, Coupling of wet scavenging of sulphur to clouds in a numerical weather prediction model, Tellus 45B, 1–22.

    CAS  Google Scholar 

  48. Chuang, C., Penner, J. and Edwards, L.: 1992, Nucleation scavenging of smoke particles and simulated drop size distributions over large biomass fires, J. Atmos. Sci. 14, 1264–1275.

    Google Scholar 

  49. Smagorinsky, J.: 1963, General circulation experiments with the primitive equations. Part I: The basic experiment, Mon. Wea. Rev. 91, 99–164.

    Google Scholar 

  50. Mellor, G. and Yamada, T.: 1974, A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  51. Tremback, C., Powell, J., Cotton, W. and Pielke, R.: 1987, The forward in time upstream advection scheme: Extension to higher orders, Mon. Wea. Rev. 115, 540–555.

    Google Scholar 

  52. Olivier, J., Bouwman, A., van der Maas, C., Berdowski, J., Veldt, C., Bloos, J., Visschedijk, A., Zandveld, P. and Haverlag, J.: 1996, Description of EDGAR Version 2.0: A Set of Global Emission Inventories of Greenhouse Gases and Ozone-Depleting Substances for All Anthropogenic and Most Natural Sources on a per Country Basis and on a 1×1 Degree Grid, RIVM Report 771060 002/TNO-MEP Report R96/119, National Institute of Public Health and the Environment, Bilthoven, the Netherlands.

    Google Scholar 

  53. Satyamurty, P., Nobre, C. and Silva Dias, P.: 1998, South America. In: D. Karoly and Vincent D., (eds.), Meteorology of the Southern Hemisphere, Meteorological Monographs 27 No. 49, pp. 119–139, American Meteorological Society, Boston.

    Google Scholar 

  54. McClaid-Cook, K., Selhorst, D., Widson, J., Pantoja, N., Brown, I., Prins, E., Feltz, J. and Fonseca Duarte, A. A.: 2003, Estimation of Amazon biomass burning events in Acre, Brazil using GOES-8 and AVHRR hot pixel data. In: The 99 th Annual Meeting of the Association of American Geographers, New Orleans, Lousiania, March 5–8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saulo R. Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, S.R., Longo, K.M., Silva Dias, M.A.F. et al. Monitoring the transport of biomass burning emissions in South America. Environ Fluid Mech 5, 135–167 (2005). https://doi.org/10.1007/s10652-005-0243-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-005-0243-7

Key words

Navigation