Skip to main content
Log in

Estimating growth charts via nonparametric quantile regression: a practical framework with application in ecology

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

We discuss a practical and effective framework to estimate reference growth charts via regression quantiles. Inequality constraints are used to ensure both monotonicity and non-crossing of the estimated quantile curves and penalized splines are employed to model the nonlinear growth patterns with respect to age. A companion R package is presented and relevant code discussed to favour spreading and application of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bollaerts K, Eilers PHC, Aerts M (2006) Quantile regression with monotonicity restrictions using \(P\)-splines and the \(L_1\)-norm. Stat Model 6:189–207

    Article  Google Scholar 

  • Bondell HD, Reich BJ, Wang H (2010) Non-crossing quantile regression curve estimation. Biometrika 97:825–838

    Article  PubMed  Google Scholar 

  • Borghi E, de Onis M, Garza C, the WHO Multicentre Growth Reference Study Group (2006) Construction of the world health organization child growth standards: selection of methods for attained growth curves. Stat Med 25:247–265

    Google Scholar 

  • Bosch RJ, Ye Y, Woodworth GG (1995) A convergent algorithm for quantile regression with smoothing splines. Comput Stat Data Anal 19:613–630

    Article  Google Scholar 

  • Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–420

    Article  Google Scholar 

  • Cole TJ, Green P (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11:1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Dette H, Volgushev S (2008) Non-crossing non-parametric estimates of quantile curves. J R Stat Soc B 70:609–627

    Article  Google Scholar 

  • Duarte CM, Marbà N, Agawin N, Cebrian J, Enriquez S, Fortes MD, Gallegos ME, Merino M, Olesen B, Sand-Jensen K, Uri J, Vermaat J (1994) Reconstruction of seagrass dynamics:age determinations and associated tools for the seagrass ecologist. Mar Ecol Prog Ser 107:195–209, http://www.int-res.com/articles/meps/107/m107p195.pdf

  • He X (1997) Quantile curves without crossing. Am Stat 51:186–192

    Google Scholar 

  • He X, Shi P (1998) Monotone B-spline smoothing. J Am Stat Assoc 93:643–649

    Google Scholar 

  • Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM (2004) Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. J Am Med Assoc 291:2847–2850

    Article  CAS  Google Scholar 

  • Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Koenker R (2011) quantreg: Quantile Regression. http://CRAN.R-project.org/package=quantreg, R package version 4.71

  • Koenker R, Ng P, Portnoy S (1994) Quantile smoothing splines. Biometrika 81:673–680

    Article  Google Scholar 

  • Liu J, Ji S, Ye J (2009) SLEP: sparse learning with efficient projections. Arizona State University, http://www.public.asu.edu/jye02/Software/SLEP

  • Meyer M, Woodroofe M (2000) On the degrees of freedom in shape-restricted regression. Ann Stat 28:1083–1104

    Article  Google Scholar 

  • Muggeo VMR (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071

    Article  PubMed  Google Scholar 

  • Muggeo VMR, Sciandra M, Augugliaro L (2012) Quantile regression via iterative least squares computations. J Stat Comput Simul 82:1557–1569

    Article  Google Scholar 

  • Ng PT (1996) An algorithm for quantile smoothing splines. Comput Stat Data Anal 22:99–118

    Article  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org, ISBN 3-900051-07-0

  • Rigby RA, Stasinopoulos DM (2004) Smooth centile curves for skew and kurtotic data modelled using the box-cox power exponential distribution. Stat Med 23:3053–3076

    Article  PubMed  Google Scholar 

  • Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape (with discussion). Appl Stat 54:507–554

    Google Scholar 

  • Tomasello A, Calvo S, Maida GD, Lovison G, Pirrotta M, Sciandra M (2007) Shoot age as a confounding factor on detecting the effect of human-induced disturbance on posidonia oceanica growth performance. J Exp Mar Biol Ecol 343(2):166–175. doi:10.1016/j.jembe.2006.11.017, http://www.sciencedirect.com/science/article/pii/S0022098107000330

    Google Scholar 

  • Wei Y, Pere A, Koenker R, He X (2006) Quantile regression methods for reference growth charts. Stat Med 25:1369–1382

    Article  PubMed  Google Scholar 

  • Yuan M (2006) GACV for quantile smoothing splines. Comput Stat Data Anal 50:813–829

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for his/her valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito M. R. Muggeo.

Additional information

Handling Editor: Ashis SenGupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muggeo, V.M.R., Sciandra, M., Tomasello, A. et al. Estimating growth charts via nonparametric quantile regression: a practical framework with application in ecology. Environ Ecol Stat 20, 519–531 (2013). https://doi.org/10.1007/s10651-012-0232-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-012-0232-1

Keywords

Navigation