Skip to main content

Advertisement

Log in

Observing and analyzing children’s mathematical development, based on action theory

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

Children who experience difficulties with learning mathematics should be taught by teachers who focus on the child’s best way of learning. Analyses of the mathematical difficulties are necessary for fine-tuning mathematics education to the needs of these children. For this reason, an instrument for Observing and Analyzing children’s Mathematical Development (OAMD), based on action theory, has been developed. The use of levels of action is a new insight in the diagnostic process. Using the OAMD makes it possible to explore and analyze a child’s knowledge, proficiency and possible difficulties on four levels of acting in the domain of Number (counting, addition, subtraction, multiplication and division). The research concerns children from kindergarten up to grade three. In this article, we will discuss the purpose and the construction of the instrument with the focus on the usability of the OAMD. The study examines the quality and the diagnostic value of the instrument by means of the internal consistency, the test–retest reliability and the construct validity. The analyses show positive results. The conclusion of the research is that the OAMD is a suitable instrument for the analysis of numerical development of young children and their possible difficulties in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arievitch, I. M., & Haenen, J. P. P. (2005). Connecting sociocultural theory and educational practice: Galperin’s approach. Educational Psychologist, 40, 155–165. doi:10.1207/s15326985ep4003_2

    Article  Google Scholar 

  • Aunola, K., Leskinen, E., Lerkkanen, M., & Nurmi, J. (2004). Developmental dynamics of math performances from preschool to grade 2. Journal of Educational Psychology, 96, 699–713. doi:10.1037/0022-0663.96.4.699

    Article  Google Scholar 

  • Baroody, A. J., Eiland, M., & Thompson, B. (2009). Fostering at-risk preschoolers’ number sense. Early Education and Development, 20, 80–128. doi:10.1080/10409280802206619

    Article  Google Scholar 

  • Berch, D. (2005). Making sense of number sense: Implications for children with mathematical disabilities. Journal of Learning Disabilities, 38, 333–339. doi:10.1177/00222194050380040901

  • Butterworth, B. (2003). Dyscalculia screener. London, UK: GL Assessment.

    Google Scholar 

  • Clements, D. H., & Sarama, J. (2007). Early childhood mathematics. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 461–555). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Cobb, P., Wood, T., & Yackel, E. (1992). A constructivist approach to second grade mathematics. In E. Von Glasersfeld (Ed.), Radical constructivism in mathematical education (pp. 157–176). Dordrecht, the Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82, 64–81. doi:10.1348/2044-8279.002002

    Article  Google Scholar 

  • De Vos, T. (2010). TTA: Tempo test Automatiseren [Arithmetic automatization test]. Amsterdam, The Netherlands: Boom test uitgevers.

    Google Scholar 

  • Early Numeracy Research Project. (2002). Final report. Retrieved from https://www.researchgate.net/publication/237837181_Early_Numeracy_Project_Final_report

  • Gal’perin, P. J. (1969). Stages in the development of mental acts. In M. Cole & I. Maltzman (Eds.), A handbook of contemporary soviet psychology (pp. 249–273). New York, NY: Basic Books.

    Google Scholar 

  • Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22, 23–27. doi:10.1177/0963721412469398

    Article  Google Scholar 

  • Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of Experimental Child Psychology, 77, 236–263. doi:10.1006/jecp.2000.2561

    Article  Google Scholar 

  • Geary, D. C., & Hoard, M. K. (2005). Learning disabilities in arithmetic and mathematics: Theoretical and empirical perspectives. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 253–268). New York, NY: Psychology Press. doi:10.1006/jecp.2000.2561

    Google Scholar 

  • Gersten, R., Jordan, N. C., & Flojo, J. R. (2005). Early identification and interventions for students with mathematics difficulties. Journal of Learning Disabilities, 38, 293–304. doi:10.1177/00222194050380040301

    Article  Google Scholar 

  • Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability - third edition (TEMA-3). Austin, TX: PRO-ED.

    Google Scholar 

  • Goswami, U. (2008). Cognitive development: The learning brain. Hove, UK: Psychology Press.

    Google Scholar 

  • Gravemeijer, K. P. E. (1994). Developing realistic mathematics education. Utrecht, The Netherlands: Freudenthal Instituut.

    Google Scholar 

  • Gravemeijer, K. P. E. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1, 155–177.

    Article  Google Scholar 

  • Grégoire, J., Noël, M., & Van Nieuwenhoven, C. (2004). TEDI-MATH. Amsterdam, The Netherlands: Pearson.

    Google Scholar 

  • Haenen, J. (2001). Outlining the teaching–learning process: Piotr Gal’perin’s contribution. Learning and Instruction, 11, 157–170. doi:10.1016/S0959-4752(00)00020-7

    Article  Google Scholar 

  • Janssen, J., Scheltens, F., & Kraemer, J. M. (2005a). Leerling- en onderwijsvolgsysteem rekenen-wiskunde groep 3 [Student and education monitoring system mathematics grade 1]. Arnhem, The Netherlands: Cito.

    Google Scholar 

  • Janssen, J., Scheltens, F., & Kraemer, J. M. (2005b). Leerling- en onderwijsvolgsysteem rekenen-wiskunde groep 4 [Student and education monitoring system mathematics grade 2]. Arnhem, The Netherlands: Cito.

    Google Scholar 

  • Janssen, J., Scheltens, F., & Kraemer, J. M. (2006). Leerling- en onderwijsvolgsysteem rekenen-wiskunde groep 5 [Student and education monitoring system mathematics grade 3]. Arnhem, The Netherlands: Cito.

    Google Scholar 

  • Janssen, J., Verhelst, N., Engelen, R., & Scheltens, F. (2010). Wetenschappelijke verantwoording van de toetsen LOVS Rekenen-Wiskunde voor groep 3 tot en met 8 [Scientific justification of the mathematics test for grade 1 until grade 6]. Arnhem, The Netherlands: Cito.

    Google Scholar 

  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45, 850–867. doi:10.1037/a0014939

    Article  Google Scholar 

  • Koerhuis, I. (2010). Rekenen voor kleuters [Mathematics for kindergarten]. Arnhem, The Netherlands: Cito.

    Google Scholar 

  • Koerhuis, I., & Keuning, J. (2011). Wetenschappelijke verantwoording van de toetsen Rekenen voor kleuters [Scientific justification of the mathematics test for kindergarten]. Arnhem, The Netherlands: Cito.

    Google Scholar 

  • Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95–03. doi:10.1016/j.learninstruc.2012.12.001

    Article  Google Scholar 

  • Kroesbergen, E. H., & Van Luit, J. E. H. (2003). Mathematics interventions for children with special educational needs: A meta-analysis. Remedial and Special Education, 24, 97–114. doi:10.1177/07419325030240020501

    Article  Google Scholar 

  • Kroesbergen, E. H., Van Luit, J. E. H., Van Lieshout, E. C. D. M., Van Loosbroek, E., & Van de Rijt, B. A. M. (2009). Individual differences in early numeracy: The role of executive functions and subitizing. Journal of Psychoeducational Assessment, 27, 226–236. doi:10.1177/0734282908330586

    Article  Google Scholar 

  • Mazzocco, M. M. M. (2007). Defining and differentiating mathematical learning disabilities and difficulties. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 29–47). Baltimore, MD: Paul H. Brooks.

    Google Scholar 

  • Mazzocco, M. M. M., & Thompson, R. E. (2005). Kindergarten predictors of math learning disability. Learning Disabilities Research and Practice, 20, 142–155. doi:10.1111/j.1540-5826.2005.00129.x

    Article  Google Scholar 

  • National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: U.S. Department of Education.

    Google Scholar 

  • Navarro, J. I., Aguilar, M., Marchena, E., Ruiz, G., Menacho, I., & Van Luit, J. E. H. (2012). Longitudinal study of low and high achievers in early mathematics. British Journal of Educational Psychology, 82, 28–41. doi:10.1111/j.2044-8279.2011.02043.x

    Article  Google Scholar 

  • Nunes, T., & Bryant, P. (1996). Children doing mathematics. Oxford, UK: Blackwell.

    Google Scholar 

  • Opfer, J. E., & Siegler, R. S. (2012). Development of quantitative thinking. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 585–605). UK: Oxford University Press. doi:10.1093/oxfordhb/9780199734689.013.0030

    Google Scholar 

  • Van de Rijt, B. A. M., Van Luit, J. E. H., & Pennings, A. H. (1999). The construction of the Utrecht early mathematical competence scales. Educational and Psychological Measurement, 59, 289–309. doi:10.1177/0013164499592006

    Article  Google Scholar 

  • Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54, 9–35.

    Article  Google Scholar 

  • Van Groenestijn, M. J. A. (2002). A gateway to numeracy. A study of numeracy in adult basic education. Utrecht, The Netherlands: CD-β Press.

    Google Scholar 

  • Van Groenestijn, M., Borghouts, C., & Janssen, C. (2011). Protocol ernstige rekenwiskunde-problemen en dyscalculie [Protocol severe mathematical problems and dyscalculia]. Assen, The Netherlands: Van Gorcum.

    Google Scholar 

  • Van Luit, J. E. H. (2015). Good math education in kindergarten cannot prevent dyscalculia. Revista de Psicología y Educación / Journal of Psychology and Education, 10, 43–60.

    Google Scholar 

  • Veraksa, N. E., & Van Oers, B. (2011). Early childhood education from a Russian perspective. International Journal of Early Years Education, 19, 5–17.

    Article  Google Scholar 

  • Von Aster, M., Weinhold, M., & Horn, R. (2005). Zareki-R. Neuropsychologische Testbatterie für Zahlenverarbeitung und Rechnen bei Kindern [Zareki-R. Neuropsychological mathematics test for children]. Frankfurt am Main, Germany: Pearson.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. A. Bunck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunck, M.J.A., Terlien, E., van Groenestijn, M. et al. Observing and analyzing children’s mathematical development, based on action theory. Educ Stud Math 96, 289–304 (2017). https://doi.org/10.1007/s10649-017-9763-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-017-9763-6

Keywords

Navigation